一、新疆太古宙变质岩系岩石组合特征(论文文献综述)
郝江波[1](2021)在《中-南阿尔金地区中-新元古代物质组成、年代学及构造演化》文中提出阿尔金地区位于青藏高原的北缘,夹持于塔里木、柴达木陆块之间,具有重要的地质意义。阿尔金地区前寒武纪地质体分布广泛,但是关于阿尔金在中-新元古代的构造演化历史研究程度相对薄弱,制约了其与全球超大陆事件之间的关系认识。本文以阿尔金山地区前人划分的长城纪巴什库尔干岩群、蓟县纪塔昔达坂群和青白口纪索尔库里群以及新元古代岩浆岩为研究对象,在大量的野外地质调研基础上,通过岩相学、锆石年代学、地球化学以及构造变形分析等手段,确定了巴什库尔干岩群、塔昔达坂群和索尔库里群的形成时代、沉积环境、碎屑物源以及构造背景;厘定了上述地层构造变形的几何学和运动学特征,探讨了其动力学过程。同时,通过对新元古代岩浆岩进行岩石学、地球化学和锆石LA-ICP-MS U-Pb定年分析,建立了阿尔金地区中-新元古代岩浆事件的年代学格架,探讨了各期次火成岩的岩浆源区性质及其形成的构造背景。基于上述研究以及前人研究成果,最终探讨了阿尔金中-新元古代区域构造演化历史及其块体亲缘性,其主要认识如下:1.塔昔达坂群总体为一套低绿片岩相的副变质岩,原岩建造可能是一套深水还原环境下具浊积岩特征的复理石建造。物质源区以长英质陆弧和上地壳物质为主,形成于活动大陆边缘的构造环境,其形成时代介于1087~945Ma。阿尔金杂岩中绿片岩相副变质岩与中阿尔金塔昔达坂群具有相同的物质组成、形成时代、碎屑锆石频谱以及锆石Hf同位素,表明两者应属于同一套地层。2.首次在索尔库里群乱石山组中发现凝灰岩夹层,限定其形成时代为936Ma。索尔库里群总体为一套形成于浅海-潮坪环境的碎屑岩-碳酸盐岩建造,物质源区主要来自再旋回造山带,少数来源于克拉通,形成于伸展构造环境。索尔库里群砾岩和岩屑砂岩成分与塔昔达坂群物质组成相似,同时两者具有相似的碎屑锆石频谱,说明塔昔达坂群为索尔库里群提供了物源。3.在阿尔金杂岩中新识别出多个新元古代花岗质岩体,其成岩年龄介于997-901Ma。地球化学特征显示它们为S型和I-S过渡型花岗岩,岩浆起源于塔昔达坂群与南阿尔金变质表壳岩的部分熔融。在前人划分的长城纪巴什库尔干岩群中解体出三期新元古代中晚期岩浆记录:825 Ma的A型花岗岩、779Ma的高分异花岗岩以及758 Ma的高分异花岗岩与同时期的辉绿岩,这些新元古代中-晚期岩浆作用主要形成于板内的伸展环境。4.揭示前人划分的长城纪巴什库尔干岩群并非传统上认为的一套连续沉积地层,主要由新元古代-古生代不同成因环境的岩块无序拼贴在一起,为构造混杂岩。本文将巴什库尔干岩群重新厘定为一套新元古代晚期(南华纪)具有裂谷盆地性质的的火山-碎屑沉积岩系,其他物质组分应该从巴什库尔干群中剥离出来。5.构造变形分析表明,塔昔达坂群至少经历3期构造变形,第一期构造变形可能与新元古代超大陆聚合有关,索尔库里群至少是在塔昔达坂群第一期变形之后沉积的。塔昔达坂群、索尔库里群、巴什库尔干杂岩南部一起经历SSW向NNE的挤压作用,巴什库尔干杂岩北部发育同时期向SSE方向逆冲,该期变形可能与北阿尔金洋的俯冲过程有关。而塔昔达坂群、索尔库里群以及巴什库尔干杂岩晚期NW-SE向挤压作用可能与阿尔金形成左行走滑断裂系有关。6.中-南阿尔金与东昆仑、柴达木地块具有相似的中元古代晚期-新元古代岩浆-沉积记录,共同构成柴达木地块的前寒武纪基底。7.结合与Laurentia东缘、Baltica西南缘以及Amazoina西南缘在沉积记录和岩浆活动等方面的相似性,本文为构造古地理重建提供了新的模型,认为阿尔金可能位于Rodinia超大陆核心区Laurentia、Baltica、Amazoina之间。
刘根驿[2](2021)在《吉南夹皮沟地区太古宙表壳岩变质作用研究》文中进行了进一步梳理吉林南部夹皮沟地区是华北克拉通东北缘重要的太古宙出露区,区内新太古代角闪岩相到麻粒岩相的变质表壳岩发育,对其开展变质作用研究,对于确定华北克拉通新太古代末期的构造演化环境提供了有利条件,对区内金矿等矿产资源的研究提供新太古代变质岩的基础资料。本文选择吉林南部夹皮沟地区作为重点研究区,并以新太古代变质表壳岩作为研究对象,通过详细的变质岩岩石学、岩相学、矿物化学特征和锆石U-Pb年代学研究,揭示了该区变质表壳岩的岩石组成、变质程度与变质期次,变质时代、PT轨迹样式、原岩类型及所反映的地球动力学过程,进一步探讨了该地区的构造演化样式。主要获得了以下几个方面的新认识:研究区内的变质表壳岩主要包括变质泥质片麻岩、变质基性麻粒岩两类。变质泥质片麻岩,岩石类型为夕线石榴黑云长石片麻岩;变质基性麻粒岩岩石类型包括石榴角闪斜长辉石岩、石榴二辉麻粒岩、紫苏榴英岩。基于详细的岩相学观察,结合变质反应结构以及矿物化学特征,将变质泥质片麻岩划分出三个阶段变质矿物组合,并利用传统地质温压计估算出各个阶段的温压条件。早期进变质阶段(M1):石榴石的核部保留了部分早期进变质阶段的矿物,变质矿物组合为Grt(核)+Sil+Bi+Pl+Q,温压范围533.0~581.0℃和4.0~4.3kbar;峰期变质阶段(M2):变质矿物组合为Grt+Bi+Sil+Kfs+Pl+Q,温压范围619.1~647.0℃和5.42~5.92kbar;晚期退变质阶段(M3):变质矿物组合为Grt(边)+Bi+Pl,温压范围540.8~599.8℃和4.50~4.98kbar。变质基性麻粒岩峰期高压麻粒岩变质阶段(M1):变质矿物组合为Grt+Cpx+Pl+Mag+Q,具有典型基性高压麻粒岩相特征,温压范围842~911℃和9.49~9.86kbar;峰期中压麻粒岩变质阶段(M2):变质矿物组合为Opx+Cpx+Grt+Q+Mag,出现了典型的降温结构-―红眼圈‖结构,温压范围754~819℃和7.73~8.75kbar;晚期角闪石退变质阶段(M3):变质矿物组合为Grt+Hb+Pl,温压范围681~711℃和6.86~7.40kbar。具有逆时针近等压降温(IBC)型P-T轨迹特征。对夹皮沟地区变质表壳岩岩石地球化学进行了研究,并结合原岩判别图解和构造判别图解,恢复研究区变质表壳岩原岩为玄武质火山岩和少量的沉积岩,形成于岛弧或大陆边缘构造环境。LA-ICP-MS锆石U-Pb定年结果表明,夹皮沟地区变质表壳岩变质年龄为2506~2544Ma,表明变质作用发生在新太古代晚期,该时期变质事件可能是由于地幔柱环境下大规模幔源岩浆底侵作用引起,1949±13Ma变质锆石U-Pb年龄表明,研究区的变质表壳岩在古元古代时期亦发生了一次变质事件,可能与陆块间的俯冲碰撞及其后期地幔上涌有关。
吴迪[3](2021)在《辽东连山关地区早前寒武纪构造演化与铀成矿作用研究》文中研究说明连山关地区位于华北克拉通北缘铀成矿省辽东铀成矿带,是研究前寒武纪构造演化与成矿作用的重要窗口。已知铀矿床均分布在连山关花岗岩体与辽河群接触带附近,受韧性剪切带控制,前人对连山关地区铀矿成因分歧较大,对剪切带控矿缺少深入、细致的研究,对矿床中的基性岩与铀矿的关系研究处于空白。鉴于此前的成果,本文的研究对象为连山关地区典型铀矿、基性岩和周缘韧性剪切带。采用岩相学、地球化学、锆石U-Pb同位素年代学等研究方法,探讨早前寒武纪主要地质单元对铀矿的控制作用,丰富造山带铀成矿基础理论,完善研究区铀成矿模式,对铀矿找矿工作提出新的思路。研究取得的主要认识如下:1.连山关岩体遭受三期构造变形改造。第一期变形表现为连山关岩体隆升,上覆辽河群发生顺层滑脱;第二期变形为南北向挤压导致沿岩体南缘和辽河群接触带发生强烈的韧性剪切变形,形成北西向韧性剪切带;第三期为北西向挤压变形,形成北东、北东东向脆性断裂构造。岩体南缘的右行韧性剪切带为压扁应变类型,属于一般压缩-平面应变范围,Flinn指数K值介于0.19~0.69,属于S/SL类型构造岩。研究区内铀矿体均为隐伏盲矿体,主要赋存于沿着连山关岩体和辽河群接触带右行剪切作用形成的背斜褶皱核部,和北东东向断裂关系密切。2.连山关岩体为混合花岗杂岩体,组成杂岩体主体为红色钾质混合花岗岩,其间有少量残留体,为早期钠质花岗片麻岩,且鞍山群残留体在其中大量分布,岩体边部分布有灰白色重熔混合岩。通过锆石U-Pb年龄频谱图,表明峰值年龄主要为1760~1940Ma、~2275Ma、2500Ma。其中,~2500Ma的年龄代表了连山关岩体的主体形成时代,标志着大陆克拉通化及其地壳分异的重要事件;~2275Ma的峰值年龄代表了连山关地区一期基底岩石重熔事件;1780~1990Ma的峰期年龄代表了吕梁运动作用下,基底岩石再次发生强烈的重熔,该期事件可能有利于铀的活化、运移,这与连山关铀矿形成年龄相吻合。3.研究区发育强烈的围岩蚀变作用,有明显的热液活动现象。最常见的围岩蚀变包括水云母化、绿泥石化、赤铁矿化,其他蚀变包括黄铁矿化、钠黝帘石化、碳酸盐化、硅化等。水云母主要由斜长石蚀变而成,绿泥石主要由黑云母蚀变而成。与铀矿化关系密切的围岩蚀变作用是绿泥石化和赤铁矿化,绿泥石蚀变后叠加棕褐色赤铁矿化与铀矿化的关系最为显着。4.研究区铀矿赋矿围岩经重熔形成的混合岩有四种类型,主要特点是石英含量高,绿泥石含量变化大,石英与绿泥石的含量往往呈负相关;具有富Si、略富Al、富Na、富K和低Mg、低Ca的主量元素地球化学特征;微量元素具有富集Be、Mo、Pb、Y、Ba、La、Cu,亏损Co、Ni、Zn、Cr、Ti、V的特点;具有明显的轻稀土富集和重稀土相对亏损等特征,具有较显着的Eu负异常;与U关系密切的共生元素有Pb、Mo、V、Be。5.钻孔深部基性岩以变辉绿岩和辉绿玢岩为主,具有钾、钠含量相当,过铝质等特征,属于碱性–过碱性系列岩石;总稀土元素含量偏高,轻重稀土元素分异作用不明显,轻稀土元素相对富集,重稀土元素相对亏损,有中等程度的负Eu异常,微弱负Ce异常;微量元素Ba、La、Zr、Hf相对富集,而U、K、P、Ti相对亏损。研究区基性岩,依据地球化学特征,应属于板内碱性玄武岩,源区为过渡型地幔,形成于大陆碰撞后伸展裂解的构造环境,并在上侵过程中存在地壳混染作用。连山关岩体南缘发育的韧性剪切带及相伴生的张性破裂为基性岩的就位提供空间,基性岩同时也为铀成矿提供热源、矿化剂及部分成矿流体。6.综合分析认为,一级控矿构造为连山关岩体南缘走向北西的右行韧性剪切带,剪切带作为区内铀矿热液运移的通道,其边部的晚期NEE向断裂则是铀矿储存空间;太古宙古风化壳可能作为铀源;铀的运移、富集成矿受控于大型韧性剪切活动(提供热液运移通道)和基性岩侵入作用(提供热源和还原剂)等综合因素。结合铀成矿模型,指示连山关岩体南部辽河群覆盖区岩体隆起处与北东东向断裂交汇部位可作为下一步重点找矿靶区。
甘保平[4](2021)在《敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应》文中研究表明敦煌地块位于塔里木克拉通和华北克拉通的衔接部位,为中亚造山带南缘具有前寒武纪变质基底的一个微陆块。敦煌地块在古生代经历了多期次、多阶段的构造演化过程,并形成了一些复杂的岩浆-变质杂岩,被认为与古亚洲洋南部俯冲-闭合过程中相关的造山事件密切有关,且其中的花岗质岩浆的成因和动力学机制对于揭示敦煌地块大陆地壳的演化和中亚造山带南缘的构造演化过程等均具有十分重要的地质意义。本论文在已有研究基础上,通过野外地质调研,选取敦煌地块北部的古生代花岗质岩石为研究对象,开展系统的岩相学、岩石学、锆石U-Pb年代学、主微量元素地球化学、矿物地球化学以及同位素地球化学(Sr-Nd-Pb-Hf)研究,试图揭示研究区古生代岩浆活动的时空分布规律,阐明古生代不同时期的岩石单元的成因机制、构造背景及深部动力学过程,从而为探讨敦煌地块古生代地壳演化和中亚造山带南缘的构造演化过程提供了依据,且取得了以下几点认识:(1)在敦煌地块东北部梁湖-小宛-大坡口子地区识别出了一套寒武纪花岗岩,锆石U-Pb年代学结果表明其侵位年龄约为510±2 Ma,为目前报道敦煌地区古生代时期最古老的深成侵入体。地球化学特征表明其属于准铝质、钙碱性I型花岗岩,具有正的εHf(t)值(+11.0~+14.7)和εNd(t)值(+2.3~+5.6),对应的模式年龄分别为754~520 Ma和970~740 Ma,以及高的放射性成因Pb同位素特征,表明岩浆起源于新生地壳的部分熔融作用,并有少量地幔物质的加入。其中的大坡口子细粒花岗岩具有埃达克质岩石的地球化学特征,如Sr=730–733 ppm,Y=1.84–1.93 ppm和Yb=~0.21 ppm,Sr/Y=380–398,属于加厚的新生地壳(至少大于40 km的地壳深度)部分熔融的产物。结合区域地质,本研究认为敦煌地块中这些寒武纪岩体形成于一个大陆弧的构造背景,为古亚洲洋南缘俯冲作用相关岩浆事件的产物,推测古亚洲洋南缘的初始俯冲时间可能发生于早寒武世。(2)敦煌地块奥陶和志留纪的岩浆岩主要出露在北部瓜州南地区,以梁湖石英闪长岩和十工二长花岗岩为代表,锆石U-Pb定年结果表明其侵位年龄分别为455±3 Ma和431±3 Ma。地球化学特征表明二者都属于准铝质、钙碱性I型花岗岩类岩石,且具有高Sr和低Y含量,以及高的Sr/Y比值,指示具有埃达克质岩石的属性。石英闪长岩具有负的εNd(t)值(-1.3~-3.2)和正的εHf(t)值(+3.8~+8.0),对应的模式年龄分别为1120~1090 Ma和1165~906 Ma,较高的Mg O-Cr-Ni含量和Mg#值以及Ba/La和La/Sm比值,表明其岩浆可能起源于俯冲板片(沉积物熔体+流体)部分熔融作用,随后与上覆地幔楔内的橄榄岩发生相互作用,后续在上升过程中同化了地壳物质,形成于俯冲相关的构造背景。二长花岗岩具有负的εNd(t)值(-3.6)和正到负且变化较大的εHf(t)值(-2.5~+3.0),对应的模式年龄分别为1320 Ma和1197~547 Ma,低的Mg O,Mg#值以及Cr-Ni-Co含量,表明其岩浆源区是由加厚的新生地壳和中元古代地壳物质混合而成,并且伴有少量的地幔物质参与,属于同碰撞构造背景下的岩浆产物。通过地壳厚度的初步估算,结果显示敦煌地块早志留世地壳厚度可高达50~55 km,推测是由古亚洲洋俯冲过程中幔源岩浆底侵以及后续敦煌地块和北山造山带最南部石板山地体大约在440~430 Ma发生碰撞所致。(3)敦煌地块泥盆纪花岗岩类主要分布在三危山-东水沟-蘑菇台地区,其中东水沟岩体为复式岩体,由石英闪长岩-花岗闪长岩-黑云母花岗岩组成,锆石U-Pb年代学结果表明其侵位年龄为390~380 Ma,侵入花岗闪长岩中的晚期英安斑岩形成年龄为367±4Ma。早期石英闪长岩-花岗闪长岩和晚期侵入体英安斑岩具有岛弧岩浆的地球化学特征,属于中-高钾、钙碱性、准铝质岩系,其中石英闪长岩-花岗闪长岩具有正的εNd(t)值(-0.73~+0.38)和εHf(t)值(+3.12~+10.7),对应的模式年龄分别为1.12~1.04 Ga和1.15~0.83 Ga,以及显示下地壳属性的Pb同位素组成。这些岛弧岩浆岩均被认为是在镁铁质幔源岩浆底侵作用下,诱发新生玄武质下地壳部分熔融作用的产物。黑云母花岗岩具有高Sr,低Y含量以及高的Sr/Y比值,表明具有埃达克质岩石的属性。此外,它们还具有高的Cr-Ni含量和Mg#值,正的εNd(t)值(+3.0),负到正且变化较大的εHf(t)值(-3.67~+12.2,大部分大于0),对应的模式年龄分别为1.34~0.57 Ga和0.82 Ga,以及低的Pb同位素组成,这些特征表明其可能起源于俯冲板片的部分熔融作用,随后与上覆地幔楔橄榄岩发生相互作用,并且岩浆上升期间可能受到一定程度的中元古代地壳的混染。(4)本研究从三危山-黄水沟北地区敦煌群中厘定出了450~440 Ma的片麻状英云闪长岩(属于第二、三岩组)和368±3 Ma的酸性火山岩(属于第四岩组)。片麻状英云闪长岩具有岛弧岩浆的特征,显示相对富集大离子亲石元素(如Rb,Ba,U和Pb),亏损高场强元素(如Nb,Ta和Ti)的特征,具有变化范围较大的εHf(t)值(-9.7~+10.4),表明岩浆起源于新生地壳物质和古老地壳物质的部分熔融作用。三危山酸性火山岩有负的εHf(t)值(-5.6~-1.9),古元古代的模式年龄(平均年龄为1640 Ma),指示岩浆起源于古老下地壳物质的熔融。结合已有的研究,表明敦煌群可能最晚形成于晚泥盆世(~368Ma),并非之前所认为的形成于1.95~1.83 Ga。(5)综合已有的研究,本论文认为敦煌地块属于中亚造山带南部的一个具有太古代-古元古代变质结晶基底微陆块。在早寒武世沉积盖层形成之后,在古生代乃至中生代其遭受了古亚洲洋南部俯冲-增生造山作用过程的强烈改造,使其地壳发生活化,在整个敦煌地区形成了广泛的寒武纪-二叠纪岩浆岩和晚奥陶世-泥盆纪变质岩。其中古生代岩浆作用大致可划分为六期:中寒武世(~510 Ma),晚奥陶世-早志留世(~440 Ma),早泥盆世(~410 Ma),晚泥盆世(390~360 Ma),中石炭世(~335 Ma),中-晚二叠世(~250~280 Ma),这些时代所发育的岩浆岩大部分属于富钠、钙碱性、准铝质-弱过铝质的I型花岗质岩石系列。敦煌地块经历了早古生代俯冲-碰撞造山过程和晚古生代俯冲-碰撞-伸展的两期构造演化过程,并在志留纪和石炭纪发生了两次地壳增厚事件(厚度达50~55 km)。此外,敦煌地块小宛地区和三危山地区分别属于寒武纪和泥盆纪时期的岩浆弧,该弧岩浆作用可能对敦煌地块北部古生代的地壳生长起了重要作用,而敦煌地块南部晚志留世-石炭纪岩浆作用事件主要以古老地壳再造为主。
许志河[5](2020)在《吉林省中东部中生代岩浆铜镍硫化物矿床地质地球物理找矿模型及预测研究》文中研究说明红旗岭-漂河川-长仁岩浆型铜镍成矿带位于吉中-延吉活动陆缘中部,中亚造山带东南缘。自显生宙以来,经历了古亚洲洋、蒙古-鄂霍茨克洋和环太平洋三大构造体制的叠加与转换过程,形成了大量岩浆型铜镍硫化物矿床。近年来,在中亚造山带西段(天山-阿尔泰段)相继发现了喀拉通克、黄山、图拉尔根、坡北等大型铜镍矿,然而中亚造山带东南段的铜镍硫化物矿床的找矿工作并无重大突破。同时,研究区地质找矿工作多偏重矿床尺度的观测和研究,缺乏区域成岩成矿动力学、地质年代学、岩石地球化学及地球物理学等方面的综合研究,导致上述各方面脱节,很难成为一个有机整体。本论文在系统收集、整理和研究前人地质资料的基础上,将区内最具有代表性的红旗岭大型铜镍矿、漂河川中型镍矿、以及研究程度相对较低但找矿前景较好的的长仁-獐项中型铜镍矿作为典型矿床。论文从研究区中生代镁铁-超镁铁质岩体的成岩成矿动力学背景入手,以地质年代学、岩石地球化学、区域小比例尺地球物理学为方法,对研究区内镁铁质-超镁铁质岩的原生岩浆、岩浆源区、成岩成矿时代、成矿作用、矿床成因等方面进行研究,认为研究区中生代镁铁质-超镁铁质岩体成岩事件划分为两期:印支期(250~204Ma),为岩石圈拆沉背景,软流圈上涌底侵岩石圈地幔发生大比例熔融的产物,因源区硫化物耗尽或极少残留,故该期成矿潜力极佳;燕山期(191~175Ma),为洋壳俯冲弧后伸展背景,幔源岩浆熔融比例较小,铜镍成矿金属储存于源区硫化物中故该期岩体成矿潜力较差。针对典型矿区开展大比例尺综合地球物理方法(如:高精度重力、地面磁测、地面瞬变电磁及可控源音频大地电磁等)为研究方法,圈定研究区镁铁-超铁质岩体的空间分布特征,认为研究区岩浆通道成矿系统,深部为单一开放式的岩浆主通道;浅部由多个次级岩浆通道组成。同时开展精细化地球物理数据处理研究,结果显示重、磁边界识别(ED)及离散小波变换(DWT)技术可以用于厘定岩体与围岩、岩体与矿体以及矿体与围岩的边界;最后,本文根据岩浆型铜镍硫化物矿床的成矿作用和矿体产出部位,建立不同成矿模式,以此为基础结合地球物理数据处理与信息提取技术,建立地球物理找矿模型,并圈定3个A级和1个B级找矿远景区。
刘平华,田忠华,文飞,周万蓬,王义龙[6](2020)在《华北克拉通胶北地体多期高级变质事件:来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据》文中提出胶北是华北克拉通一个记录了多期高级变质事件的前寒武纪变质地体,确定其每期变质-深熔事件时代与性质对进一步认识胶北乃至华北克拉通早前寒武纪地质演化具有十分重要的科学意义.本文以栖霞石榴斜长角闪岩及其伴生的花岗质浅色体为研究对象,通过锆石内部矿物包体、CL图像、LA-ICP-MS U-Pb定年与稀土元素组成的综合研究,发现石榴斜长角闪岩(19LR53-1)中锆石可进一步划分为两类:第一类(新太古代晚期)锆石通常具有浑圆状晶形且相对弱的(灰黑色)的阴极发光效应,18个该类锆石微区记录了十分一致的207Pb/206Pb年龄,变化于2 540±58 Ma至2 439±54 Ma之间,相应的加权平均年龄为2 498±25 Ma,应代表石榴斜长角闪岩遭受新太古代晚期变质作用的时代;第二类锆石通常具有柱状晶形且相对强的(灰色-灰白色)的阴极发光效应,14个该类锆石微区记录了十分一致的207Pb/206Pb年龄,变化于1 906±54 Ma至1 821±60 Ma之间,相应的加权平均年龄为1 865±30 Ma,被解释为石榴斜长角闪岩遭受古元古代晚期退变质作用的时代.花岗质浅色脉体(19LR53-2)中绝大多数锆石具有不规则状晶形且相对弱的(灰黑色)阴极发光效应,有的含有少量长英质矿物包体,如钾长石+斜长石+石英+磷灰石,18个该类锆石微区记录的207Pb/206Pb年龄变化于2 521±48 Ma至2 453±42 Ma之间,相应的加权平均年龄为2 480±22 Ma,应代表胶北地体新太古代晚期地壳深熔作用的时代.综合本文与前人发表的同位素年代学资料可知,胶北地体太古宙变质基底岩石不仅经历了新太古代晚期~2 500 Ma高级变质作用与地壳深熔作用,而且还叠加了古元古代晚期~1 850 Ma的高级变质作用与地壳深熔作用,它们可能是华北克拉通两次克拉通化过程中的地质响应.
薛昊日[7](2020)在《吉林省镁铁质-超镁铁质岩特征及成矿作用研究》文中认为吉林省地处古亚洲洋构造体系、环太平洋构造体系及蒙古-鄂霍茨克构造体系共同影响区域,区内经历了漫长而复杂的地质演化过程。伴随着不同时期的地球动力学演化,形成了大量的镁铁质-超镁铁质岩体,在这些岩体中孕育着一批铜镍硫化物矿床,其中红旗岭、赤柏松等大中型岩浆熔离型铜镍硫化物矿床的的发现,奠定了吉林省镍资源大省的地位,为国家镍资源保障做出了重大的贡献。近年来,吉林省在铜镍硫化物矿床勘查中并无重大找矿突破,这表明在镁铁质-超镁铁质岩体及铜镍硫化物矿床的研究程度上仍然存在差距,尤其是成岩成矿岩体年代学特征、地球动力学背景及成矿作用等,缺乏系统而深入的研究,严重制约着找矿工作的进一步开展。本文以现代成矿理论为基础,野外勘查调研与室内测试分析相结合,探讨不同时期地球动力学演化,综合分析研究典型矿床,通过区域成矿地质条件分析研究总结区域成矿规律,明确找矿方向,为吉林省铜镍硫化物矿床研究奠定理论基础。论文主要取得如下认识:1.系统的总结了吉林省与镁铁质-超镁铁质岩有关的地球动力学演化过程,认为其经历了太古宙华北克拉通基底的形成与演化,古元古代辽吉洋构造演化,中元古代哥伦比亚超大陆的裂解,古生代-早中生代古亚洲构造域的发展与演化及滨太平洋构造域的转换。2.通过地质学及年代学研究,将吉林省镁铁质-超镁铁质岩体成岩事件划分为5个阶段:(1)新太古代晚期(25892398Ma),代表岩体有荏田6号、9号岩体,小陈木沟含矿岩体,新太古代晚期发生的弧陆碰撞造山作用,闭合后的造山伸展环境是该期镁铁质-超镁铁质岩体形成的主要地球动力学背景;(2)古元古代中期(22371820Ma),代表岩体有赤柏松1号岩体,形成于辽吉洋闭合后的伸展环境;(3)中元古代中期(1200Ma),代表岩体有汉阳沟岩体,其所在的龙岗地块在中元古时期处于强烈的伸展环境,与哥伦比亚超大陆的最终裂解时限相对应;(4)中晚三叠世(245206Ma),代表岩体有漂河川4、5号岩体、长仁-獐项5、6、11号岩体、西北岔115号岩体以及石人沟含矿岩体,形成于古亚洲洋闭合后的伸展环境;(5)早侏罗世(191175Ma),代表岩体有福洞15、26号岩体,该期镁铁质-超镁铁质岩体是太平洋板块俯冲体制下弧后伸展环境的产物。3.通过对吉林地区典型铜镍硫化物矿床的研究,认为小陈木构铜镍硫化物矿床原生岩浆起源于受地壳混染或流体交代的亏损型地幔,在熔融期重力分异作用明显,矿石中存在的角砾,代表其形成于动荡的岩浆环境之中,通过年代学研究,该矿床为全国最古老的铜镍硫化物矿床(2589±10 Ma)。对成矿时代争议较大的赤柏松铜镍矿进行矿床成因分析研究,通过总结前人研究资料,确定该矿床成矿时代为古元古代中期(2237±62 Ma),属于熔离-贯入型铜镍硫化物矿床。对红旗岭、长仁-獐项、漂河川、二道沟、石人沟开展综合研究分析,认为兴蒙造山带东段的铜镍硫化物矿床成矿时间应起于245Ma,止于206Ma。其中长仁-獐项、漂河川、二道沟地球化学特征表现为低硅、低钛、高镁、贫碱、低∑REE的特征,富集LILE、亏损HFSE,与洋岛玄武岩(OIB)相似,岩浆源区为亏损的软流圈地幔,部分源区遭受富集地幔混染。S主要来自于上地幔,原始岩浆来源于原始地幔10%20%的部分熔融,深部熔离作用导致铂族元素亏损,在上升过程中受到一定成度地壳物质的混染。4.通过对早侏罗世福洞岩群进行成矿潜力分析,认为太平洋板块俯冲引起的局部熔融比例太小,硫化物在源区发生熔离,无法在地壳聚集成矿。5.吉林省铜镍硫化物矿床具有很强的成矿专属性,表现在(1)含矿岩体主要受深大断裂控制;(2)分异充分的镁铁质-超镁铁质杂岩体有利于成矿,辉石岩相是主要的含矿岩相,橄辉岩、辉橄岩、苏长岩次之,辉长岩一般不含矿;(3)含矿岩石发育贵橄榄石和古铜辉石,Fo≈En,镁铁质岩m/f值介于0.52,超镁铁质岩m/f值介于26之间,对成矿非常有利;(4)含矿岩相具有高镁、低硅、低钙、低∑REE,富集LILE、亏损HFSE的特征,Cr、Co和Ni含量较高;(5)地幔源区发生较大比例的部分熔融,达到高镁玄武质或苦橄质玄武岩浆的范畴。6.在判别含矿岩体与非含矿岩体的基础上,通过一系列评价指标的建立,对各个时期镁铁质-超镁铁质岩体的成矿与找矿潜力作出客观评价,认为中-晚三叠世是吉林省铜镍硫化物矿床重要的成矿期,该期镁铁质-超镁铁质岩体数量较多,岩体分异程度高,岩相复杂,含矿率高,找矿潜力最大;古元古代镁铁质-超镁铁质岩体主要分布在华北克拉通北缘东段,自北向南展布,岩体形成的构造背景与中—晚三叠世岩体相似,形成于大洋闭合后的伸展环境,同样具有较大的找矿潜力;新太古代晚期镁铁质-超镁铁质岩体由于岩体形成时代古老,经历了复杂的地质发展、变化过程,对矿体的保存条件要求苛刻,找矿难度较大;中元古代中期镁铁质—超镁铁质岩体分异程度较差,矿化程度较弱,国内同一时期形成的铜镍硫化物矿床较少,该期的成矿潜力不清,在勘查中每个岩体要结合岩体形态、分异程度、侵位深度和矿化特征等具体分析;早侏罗世镁铁质-超镁铁质岩体在兴蒙造山带东段零星分布,岩相相对单一,绝大部分为辉长岩(脉),岩体的矿化较弱,因其地幔源区的部分熔融比例太小,导致大量硫化物滞留在地幔而无法形成富含金属元素的硫不饱和原始岩浆,因而不具找矿潜力。
王磊[8](2020)在《南秦岭构造带旬阳坝地区角闪岩相变质岩系岩石学、地球化学特征及其地质意义》文中认为南秦岭构造带在早志留世之前属于扬子板块北部被动大陆边缘,这里的基底信息反映了扬子板块古老基底的构造演化信息。扬子板块主体的基底为双重基底,由古老角闪岩-麻粒岩相结晶基底和其上绿片岩相褶皱基底组成。本文对南秦岭构造带中段旬阳坝地区新发现的角闪岩相变质岩系进行岩石学、年代学及地球化学方面研究,旨在探讨秦岭造山带,特别是南秦岭构造带及其与扬子板块的构造演化历史。研究表明该斜长角闪岩原岩为基性岛弧钙碱性玄武岩,在早元古代(2362±100Ma)形成,可能为中-晚太古代地壳岩石再造产物,之后在1500~1800Ma发生变质作用,其后南秦岭构造带变质基性火山岩上发生陆源碎屑物质和碳酸盐岩沉积,并一起经历了晋宁期(~840Ma)的变质改造作用;在加里东期(~440Ma)随着扬子板块向华北板块俯冲发生另一期变质作用;在晚印支期勉略洋盆闭合,秦岭造山带全面碰撞、隆升成山,再次发生变质作用(~200Ma)。其后造山带的构造挤出作用和走滑作用,使旬阳坝地区深部基底岩石出露地表。
纪政[9](2020)在《海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究》文中认为本论文对中国东北海拉尔盆地及其毗邻的蒙古塔木察格盆地中生代火山岩进行了系统的岩石学、锆石U-Pb年代学、全岩地球化学、全岩Sr-Nd同位素和锆石Hf同位素研究,建立了海拉尔-塔木察格盆地中生代火山-沉积地层的精确年代地层格架,查明了盆地中生代火山岩的岩石成因和构造背景,揭示了环太平洋构造体系和蒙古-鄂霍茨克构造体系对中国东北地区叠加改造的地球动力学机制。根据地震反射剖面、岩石组合、陆相古生物化石组合以及区域地层对比,海拉尔-塔木察格盆地中生代火山-沉积地层传统上自下而上被划分为塔木兰沟组、铜钵庙组和南屯组,但其形成时代缺乏高精度同位素年代学的制约。本文对海拉尔-塔木察格盆地32口钻井中的中生代火山岩岩心样品进行了系统的LA-ICP-MS锆石U-Pb定年,限定了中生代火山-沉积地层的形成时代,建立了精确的年代地层格架:塔木兰沟组形成于中侏罗世卡洛夫期-晚侏罗世提塘期(166145 Ma);铜钵庙组形成于早白垩世贝里阿斯期-瓦兰今早期(142136 Ma);南屯组一段形成于早白垩世瓦兰今晚期-阿普特早期(135120 Ma);南屯组二段形成于早白垩世阿普特晚期-阿布尔早期(119111 Ma)。本文在海拉尔-塔木察格盆地中识别出了多种不同类型的中生代火山岩,包括高钾埃达克质火山岩、低钾埃达克质火山岩、富铌玄武安山岩、高硅火山岩、高镁埃达克质火山岩,它们的形成与古太平洋板块的俯冲和蒙古-鄂霍茨克洋的闭合密切相关。中侏罗世高钾埃达克质岩石由加厚的石榴角闪岩相大陆下地壳发生脱水熔融而形成,为蒙古-鄂霍茨克洋闭合的产物。晚侏罗世早期低钾埃达克质火山岩来源于古太平洋板块平板俯冲过程中榴辉岩相洋壳的含水熔融,产生的熔体在快速上升穿越较薄的地幔楔时与橄榄岩发生非常有限的反应。晚侏罗世晚期富铌玄武安山岩源自受俯冲板片熔体交代的含金云母石榴石相二辉橄榄岩地幔楔低程度的部分熔融(<2%),为古太平洋板块回卷的产物。早白垩世晚期高镁埃达克质火山岩为拆沉大陆下地壳部分熔融所产生的初始埃达克质岩浆在上升过程中与周围地幔橄榄岩发生反应的产物;晚侏罗世-早白垩世高硅火山岩存在两种成因类型,其中I型高硅火山岩起源于年轻的含云母富钾玄武质下地壳的部分熔融,A型高硅火山岩来源于曾经历脱水却并不亏损熔体的富钾中基性中-下地壳的部分熔融。此外,A型高硅火山岩主要形成于晚侏罗世晚期和早白垩世晚期,分别对应于古太平洋板块的回卷和岩石圈的拆沉。在上述研究基础上,本文结合前人发表的资料,全面阐释了东北地区中生代岩浆活动的时空分布规律,构建了环太平洋构造体系和蒙古-鄂霍茨克构造体系叠加改造的地球动力学过程。侏罗纪期间古太平洋板块的平板俯冲造成东北地区岩浆活动向陆内迁移,而靠近海沟的松辽盆地和吉黑东部于晚侏世-早白垩世早期逐渐进入岩浆活动的间歇期。受蒙古-鄂霍茨克洋闭合的影响,海拉尔-塔木察格盆地和大兴安岭地区中侏罗世经历了显着的地壳增厚。当古太平洋板块的平板部分俯冲到具有较厚岩石圈的海拉尔-塔木察格盆地和大兴安岭地区之下时,由于板片整体俯冲深度的增加导致洋壳充分发生榴辉岩化,俯冲板片不再稳定开始发生回卷。晚侏罗世晚期-早白垩世早期古太平洋板片回卷速度较慢,所引起的软流地幔物质上涌的规模和速度较小,且影响范围局限于俯冲板片前缘及其附近。在古太平洋板块持续回卷的过程中,松辽盆地和吉黑东部的岩浆活动相继复苏,形成东北地区向海沟(东南向)变年轻的早白垩世岩浆活动迁移规律。同时,随着下沉的古太平洋板块逐渐在地幔过渡带滞留脱水,引发东北地区岩石圈的拆沉和早白垩世岩浆活动的峰期自西北向东南迁移。
刘剑[10](2017)在《天然石墨的成因、晶体化学特征及对石墨烯产业化的约束》文中认为石墨烯及其应用技术在新一轮产业革命中占据重要地位。天然石墨制备石墨烯过程中原料选取及品质控制工作是石墨烯产业化瓶颈问题之一,该工作对指导石墨烯产业终端应用和推动石墨烯产业化具有重要的理论意义和实际价值。然而,这方面见诸文献的报道很少。论文选择天然石墨的成因、晶体化学特征作为主要研究内容,采用矿床学、矿物学、晶体化学与晶体物理学、资源产业经济学、石墨烯制备过程中原料选择及品质控制研究等多学科综合研究的新方法,引进石墨矿床的研究方法并提出天然石墨对石墨烯产业化的约束这样一个新命题,探讨了天然石墨的成因、晶体化学特征对石墨烯产业化的约束,从新视角入手以揭示特定成矿地质条件约束的天然石墨对石墨烯下游应用的适用性。论文主要结论:(1)全球鳞片石墨、脉型石墨和土状石墨的形成条件主要是热力学条件、碳源、有机生物、沉积建造等方面。(2)天然石墨成因及石墨化程度决定了石墨晶体的结构、特征及物理化学特征,天然石墨的成因、晶体化学特征对氧化石墨(烯)和石墨烯结构、属性及电化学性能、导电性能有重要影响。(3)鳞片石墨的成因是影响石墨烯属性及电性能的重要因素,也是影响石墨烯制备过程中氧化-还原产物性能的重要因素。(4)天然石墨都能作为石墨烯制备过程中的初始原料,根据赋矿地质条件可以预测石墨矿物对石墨烯下游应用的适用性,且能够预先确定特定地质条件产出石墨矿物制备的石墨烯粉体适合或不适合供给下游前沿新材料石墨烯企业。(5)从企业集团、产业集群、数据库系统、石墨烯资源经济带、区域协调政策、环境法规、行业标准、动态检测等方面,提出了推动石墨烯产业化的建议。论文创新性表现在:(1)绘制了天然石墨成矿过程框架图,将天然石墨成矿过程概括为“碳质来源+含矿岩石+热力学条件+石墨化”,定义为天然石墨成矿的四要素。(2)构建了下游前沿新材料石墨烯的原料选取及品质控制的理论模型。表达式为Ggeo= F(Bat,Flex,Bio,Cor,Com,Thermo)= αBat + βFlex + γBio + δCor +εCom + ζThermo模型限定了成矿地质条件→石墨矿物→石墨烯粉体→石墨烯材料的逻辑关系,以及制备的石墨烯粉体适合或不适合作为石墨烯材料的原料,为石墨烯产业终端应用提供理论基础。(3)探索了鳞片石墨制备石墨烯具可控性的技术方法,认为石墨化程度、比表面积、缺陷度、固定碳含量、碳质来源、变质相、成矿地球动力学背景等多种因素对其有不同影响,可根据对石墨烯的层数或性能的需求选择合适的天然石墨原料。(4)基于天然石墨对石墨烯产业化的约束,将石墨烯看作战略性矿产资源并提出了石墨烯资源开发利用战略的范式。
二、新疆太古宙变质岩系岩石组合特征(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、新疆太古宙变质岩系岩石组合特征(论文提纲范文)
(1)中-南阿尔金地区中-新元古代物质组成、年代学及构造演化(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 .选题背景及研究意义 |
1.2 .研究现状及存在问题 |
1.2.1 .中-新元古代全球地质事件与Rodinia超大陆研究现状 |
1.2.2 .阿尔金地区前寒武纪地质研究现状 |
1.3 .研究内容及方法 |
1.3.1 .研究内容 |
1.3.2 .研究方法 |
1.4 .实验测试分析方法 |
1.4.1 .LA-ICP-MS锆石U-Pb测年 |
1.4.2 .锆石Lu-Hf同位素分析 |
1.4.3 .全岩主、微量元素分析 |
1.5 .完成工作量 |
第二章 区域地质概况 |
2.1 .阿北地块 |
2.2 .北阿尔金(红柳沟-拉配泉)古生代俯冲混杂岩带 |
2.3 .中阿尔金(米兰河-金雁山)地块 |
2.4 .南阿尔金(茫崖)古生代俯冲碰撞混杂岩带 |
第三章 南阿尔金杂岩带前寒武纪副变质岩系研究 |
3.1 .副变质岩系岩石建造及野外地质 |
3.2 .副变质岩系锆石U-Pb年代学及地层时代 |
3.2.1 .副变质岩系锆石U-Pb年代学 |
3.2.2 .副变质岩系形成时代 |
3.3 .锆石Hf同位素 |
3.4 .南阿尔金与中阿尔金接触关系 |
3.5 .小结 |
第四章 中阿尔金地块塔昔达坂群研究 |
4.1 .塔昔达坂群岩石建造 |
4.1.1 .巴什考供地区 |
4.1.2 .尧勒萨依地区 |
4.1.3 .卡尔恰尔地区 |
4.1.4 .库如克萨依地区 |
4.2 .塔昔达坂群构造变形 |
4.3 .锆石U-Pb年代学及地层时代 |
4.3.1 .锆石U-Pb年代学 |
4.3.2 .地层时代 |
4.4 .锆石Hf同位素 |
4.5 .岩石地球化学特征 |
4.6 .小结 |
第五章 中阿尔金地块索尔库里群研究 |
5.1 .索尔库里群岩石建造 |
5.1.1 .冰沟南地区 |
5.1.2 .乙亚拉克山地区 |
5.1.3 .阿斯腾塔格地区 |
5.1.4 .金雁山地区 |
5.2 .索尔库里群沉积环境 |
5.3 .索尔库里群构造变形特征 |
5.4 .锆石U-Pb年龄学及地层时代 |
5.4.1 .锆石U-Pb年代学 |
5.4.2 .地层时代 |
5.5 .碎屑锆石Hf同位素特征 |
5.6 .小结 |
第六章 巴什库尔干岩群重新厘定及意义 |
6.1 .野外地质特征 |
6.2 .构造变形特征 |
6.3 .新元古代中-晚期沉积记录 |
6.3.1 .野外地质及岩相学特征 |
6.3.2 .U-Pb年代学 |
6.3.3 .形成时代 |
6.4 .小结 |
第七章 阿尔金新元古代岩浆作用 |
7.1 .新元古代早期岩浆事件 |
7.1.1 .野外地质及岩相学 |
7.1.2 .锆石U-Pb年代学 |
7.1.3 .锆石Lu-Hf同位素 |
7.1.4 .全岩地球化学 |
7.1.5 .岩石成因及源区性质 |
7.2 .新元古代中-晚期岩浆事件 |
7.2.1 .岩相学 |
7.2.2 .锆石U-Pb年代学和Hf同位素 |
7.2.3 .全岩地球化学 |
7.2.4 .岩石成因及源区性质 |
7.3 .小结 |
第八章 沉积背景及物源分析 |
8.1 .沉积背景分析 |
8.1.1 .塔昔达坂群与阿尔金杂岩副变质岩系 |
8.1.2 .索尔库里群 |
8.2 .物源分析 |
8.2.1 .中元古代岩浆事件分布与沉积源区 |
8.2.2 .塔昔达坂群与阿尔金杂岩副变质岩 |
8.2.3 .索尔库里群 |
8.2.4 .巴什库尔干群 |
8.3 .小结 |
第九章 阿尔金中元古代晚期-新元古代构造演化及全球事件对比 |
9.1 .构造变形序列及动力学背景讨论 |
9.2 .阿尔金中元古代晚期-新元古代构造演化 |
9.3 .阿尔金与柴达木地块的关系 |
9.4 .阿尔金地块与全球事件对比 |
第十章 主要结论与不足 |
10.1 .主要认识与结论 |
10.2 .存在不足 |
参考文献 |
附录 |
致谢 |
作者简介 |
(2)吉南夹皮沟地区太古宙表壳岩变质作用研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 选题依据与研究意义 |
1.2 研究现状及存在问题 |
1.3 研究内容、研究思路及拟解决的关键问题 |
1.3.1 研究内容 |
1.3.2 研究思路及技术路线 |
1.3.3 拟解决的关键问题 |
1.4 实验设计、测试条件 |
1.4.1 实验设计 |
1.4.2 测试条件 |
1.5 实际工作量 |
第2章 区域地质概况 |
2.1 研究区大地构造位置 |
2.2 地层 |
2.2.1 太古宙变质表壳岩系 |
2.2.2 古元古代地层 |
2.2.3 新元古代地层 |
2.2.4 中-新生代火山沉积地层 |
2.3 岩浆岩 |
2.3.1 太古宙TTG片麻岩 |
2.3.2 元古宙辉石花岗岩类 |
2.3.3 中生代花岗岩 |
2.4 构造 |
2.5 变质作用及区域矿产 |
第3章 岩石学与岩石地球化学特征 |
3.1 野外产状 |
3.2 岩相学特征 |
3.2.1 变质泥质片麻岩 |
3.2.2 变质基性麻粒岩 |
3.3 岩石地球化学 |
3.3.1 主量元素 |
3.3.2 稀土元素 |
3.3.3 微量元素 |
第4章 矿物化学特征及变质作用 |
4.1 矿物化学特征 |
4.1.1 石榴石 |
4.1.2 黑云母 |
4.1.3 斜长石 |
4.1.4 角闪石 |
4.1.5 单斜辉石 |
4.1.6 斜方辉石 |
4.2 变质阶段 |
4.2.1 变质泥质片麻岩变质阶段 |
4.2.2 变质基性麻粒岩变质阶段 |
4.3 变质作用PT条件 |
4.3.1 变质泥质片麻岩的变质温压条件 |
4.3.2 变质基性麻粒岩的变质温压条件 |
第5章 锆石U-Pb年代 |
5.1 夕线石榴黑云长石片麻岩 |
5.2 石榴角闪斜长辉石岩 |
第6章 原岩恢复与变质作用演化以及构造背景 |
6.1 原岩恢复 |
6.2 变质作用演化与P-T轨迹 |
6.3 构造背景 |
结论 |
参考文献 |
作者简介 |
致谢 |
(3)辽东连山关地区早前寒武纪构造演化与铀成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景与选题依据 |
1.1.1 早前寒武纪地壳演化 |
1.1.2 华北克拉通与成矿 |
1.1.3 前寒武纪铀矿及构造背景 |
1.1.4 选题依据 |
1.2 研究现状及存在的主要问题 |
1.2.1 研究现状 |
1.2.2 存在的主要问题 |
1.3 研究思路及拟解决的关键问题 |
1.3.1 研究思路 |
1.3.2 拟解决的关键问题 |
1.3.3 本论文依托的科研项目 |
1.4 研究方法及主要工作量 |
1.4.1 研究方法 |
1.4.2 主要工作量 |
第2章 区域地质概况 |
2.1 区域地质特征 |
2.1.1 地层 |
2.1.2 构造 |
2.1.3 岩浆岩 |
2.2 区域放射性场特征 |
2.2.1 参数特征 |
2.2.2 放射性场特征 |
2.3 区域矿产分布 |
第3章 早前寒武纪地质单元形成时代及成因探讨 |
3.1 研究区地质特征 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.2 连山关岩体及辽河群同位素年代学研究 |
3.2.1 测试样品描述及U-Pb测年结果 |
3.2.2 U-Pb年龄地质意义讨论 |
3.3 韧性剪切带发育特征 |
3.3.1 宏观变形特征 |
3.3.2 微观变形特征 |
3.3.3 有限应变测量 |
3.4 古元古代基性岩发育特征 |
3.4.1 基性岩样品的岩相学特征 |
3.4.2 基性岩样品的地球化学特征 |
3.4.3 基性岩的构造环境与物质源区 |
第4章 典型铀矿特征及铀成矿作用 |
4.1 典型铀矿床特征 |
4.1.1 连山关铀矿床 |
4.1.2 黄沟铀矿床 |
4.1.3 玄岭后铀矿床 |
4.2 铀矿石特征 |
4.2.1 矿石结构、构造及矿石物质成分 |
4.2.2 矿石化学成分及微量元素 |
4.3 铀矿体围岩及蚀变特征 |
4.3.1 铀矿体围岩 |
4.3.2 围岩蚀变特征 |
4.3.3 微量元素特征 |
4.3.4 蚀变与铀矿化的关系 |
4.4 铀成矿作用 |
4.4.1 铀成矿时代 |
4.4.2 铀成矿温压、pH和Eh值 |
4.4.3 铀源及热液来源 |
4.4.4 铀的活化迁移 |
4.4.5 铀的沉淀机制 |
第5章 构造演化与铀矿关系研究 |
5.1 韧性剪切带与铀矿关系 |
5.1.1 一级控矿构造-韧性剪切带 |
5.1.2 二级控矿构造-脆性断裂带 |
5.2 古元古代基性岩及与铀矿关系 |
5.2.1 基性岩与铀矿的时空关系 |
5.2.2 基性岩与铀矿的成因关系 |
5.3 构造变形期次与演化历史 |
5.4 铀成矿模式及找矿方向 |
第6章 结论 |
参考文献 |
作者简介及科研成果 |
致谢 |
(4)敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 选题依据及研究意义 |
1.2 研究现状 |
1.2.1 大陆地壳生长与花岗岩类 |
1.2.2 中亚造山带研究现状 |
1.2.3 中亚造山带大陆增生机制 |
1.2.4 敦煌地块研究进展及存在问题 |
1.3 研究思路、内容及方法 |
1.3.1 研究思路 |
1.3.2 研究内容和方法 |
1.4 论文主要工作量及研究成果 |
1.4.1 论文主要工作量 |
1.4.2 研究成果 |
第二章 区域地质背景 |
2.1 大地构造位置 |
2.2 地层 |
2.3 侵入岩特征 |
2.4 变质作用特征 |
第三章 敦煌地块中寒武世花岗岩地球化学特征及成因机制 |
3.1 引言 |
3.2 野外地质及岩石学特征 |
3.3 分析结果 |
3.3.1 锆石U-Pb年代学 |
3.3.2 锆石Hf同位素组成 |
3.3.3 主、微量元素地球化学特征 |
3.3.4 全岩Sr-Nd-Pb同位素组成 |
3.4 讨论 |
3.4.1 深成岩体的结晶年龄 |
3.4.2 岩浆源区和岩石成因 |
3.4.3 构造背景 |
3.5 小结 |
第四章 敦煌地块晚奥陶世-早志留世花岗岩类地球化学特征及成因机制 |
4.1 引言 |
4.2 野外地质及岩石学特征 |
4.3 分析结果 |
4.3.1 锆石U-Pb年代学 |
4.3.2 锆石Hf同位素组成 |
4.3.3 主、微量元素地球化学特征 |
4.3.4 全岩Sr-Nd-Pb同位素组成 |
4.4 讨论 |
4.4.1 岩浆的形成温度 |
4.4.2 岩浆源区和岩石成因 |
4.4.3 构造背景 |
4.5 小结 |
第五章 敦煌地块古生代片麻状英云闪长岩和火山岩岩石成因及构造意义 |
5.1 .引言 |
5.2 .野外地质及岩石学特征 |
5.3 .分析结果 |
5.3.1 锆石U-Pb年代学 |
5.3.2 锆石Hf同位素组成 |
5.3.3 主、微量元素地球化学特征 |
5.4 讨论 |
5.4.1 形成时代 |
5.4.2 岩石成因 |
5.4.3 构造意义 |
5.5 小结 |
第六章 敦煌地块东水沟泥盆纪复式岩体成因机制及地质意义 |
6.1 引言 |
6.2 野外地质及岩石学特征 |
6.3 分析结果 |
6.3.1 锆石U-Pb年代学 |
6.3.2 锆石Hf同位素组成 |
6.3.3 主、微量元素地球化学特征 |
6.3.4 全岩Sr-Nd-Pb同位素组成 |
6.3.5 矿物化学特征 |
6.4 讨论 |
6.4.1 岩浆源区和岩石成因 |
6.4.2 构造背景 |
6.5 小结 |
第七章 敦煌地块构造属性 |
7.1 敦煌地块前寒武纪大陆地壳演化 |
7.2 构造归属探讨 |
第八章 敦煌地块古生代构造-岩浆演化及对中亚造山带南缘构造演化的启示 |
8.1 敦煌地块古生代岩浆-变质作用时空分布规律 |
8.1.1 古生代岩浆活动时空分布规律 |
8.1.2 古生代变质作用演化规律 |
8.2 敦煌地块古生代地壳厚度的变化 |
8.3 敦煌地块古生代地壳生长 |
8.4 中亚造山带南缘的构造演化 |
主要认识及展望 |
1.主要认识 |
2.存在问题及展望 |
参考文献 |
附录 |
A.1 测试分析方法 |
A.1.1 锆石阴极发光图像 |
A.1.2 锆石U-Pb定年及微量元素分析 |
A.1.3 锆石Lu-Hf同位素分析 |
A.1.4 全岩主、微量元素分析 |
A.1.5全岩Sr-Nd-Pb同位素测试 |
A.1.6 矿物化学分析 |
A.2 附表 |
攻读博士学位期间取得的科研成果 |
1.博士在读期间发表的论文 |
2.在读期间参加的科研项目及学术活动 |
致谢 |
作者简介 |
(5)吉林省中东部中生代岩浆铜镍硫化物矿床地质地球物理找矿模型及预测研究(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 研究区范围 |
1.2 选题依据及研究意义 |
1.2.1 研究所属领域 |
1.2.2 选题来源 |
1.2.3 研究意义 |
1.3 研究现状及存在问题 |
1.3.1 岩浆型铜镍矿床的研究现状 |
1.3.2 岩浆型铜镍硫化物矿床地球物理勘查现状 |
1.3.3 找矿模型与成矿预测的研究现状 |
1.3.4 存在问题 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.4.3 主要工作量 |
1.5 主要研究认识 |
1.5.1 成岩成矿动力学背景与成矿作用研究 |
1.5.2 典型矿区多学科调查与研究 |
1.5.3 地球物理勘查研究 |
1.5.4 找矿模式及成矿预测研究 |
1.6 取得主要成果和创新点 |
第2章 区域地质-地球物理背景 |
2.1 区域地层 |
2.1.1 太古宇 |
2.1.2 元古界 |
2.1.3 古生界 |
2.1.4 中生界 |
2.1.5 新生界 |
2.2 区域构造 |
2.2.1 断裂 |
2.2.2 褶皱 |
2.3 区域岩浆岩 |
2.3.1 太古宙岩浆岩 |
2.3.2 元古代岩浆岩 |
2.3.3 古生代岩浆岩 |
2.3.4 中生代侵入岩 |
2.3.5 新生代侵入岩 |
2.4 区域重力场特征 |
2.5 区域磁场特征 |
2.6 区域矿产分布 |
第3章 地球动力学背景 |
3.1 古陆核形成与演化阶段 |
3.1.1 古陆核的形成 |
3.1.2 古陆核的裂解 |
3.2 辽吉洋演化阶段 |
3.2.1 辽吉洋俯冲 |
3.2.2 辽吉洋闭合 |
3.2.3 辽吉洋闭合后伸展 |
3.3 哥伦比亚超大陆裂解阶段 |
3.4 古亚洲洋构造域演化阶段 |
3.4.1 古亚洲洋俯冲 |
3.4.2 古亚洲洋最终闭合 |
3.5 古太平洋构造域演化阶段 |
3.5.1 福洞岩群 |
3.5.2 年代学与同位素特征 |
3.5.3 岩石地球化学特征 |
3.5.4 岩浆源区 |
3.5.5 成岩构造背景 |
第4章 典型矿区多学科综合调查 |
4.1 典型矿区地质特征 |
4.1.1 红旗岭 |
4.1.2 漂河川 |
4.1.3 长仁-獐项 |
4.2 成岩-成矿时代 |
4.3 岩石地球化学特征 |
4.3.1 主量元素特征 |
4.3.2 稀土和微量元素特征 |
4.3.3 锆石Hf同位素特征 |
4.4 原生岩浆与岩浆演化 |
4.4.1 岩浆源区性质 |
4.4.2 岩浆熔融程度 |
4.4.3 同化混染作用 |
4.4.4 铂族元素亏损 |
4.5 矿床成因 |
4.5.1 成矿构造背景 |
4.5.2 矿床成因 |
第5章 矿化信息提取与地球物理勘查 |
5.1 数据处理与信息提取 |
5.1.1 边界识别 |
5.1.2 离散小波变换 |
5.1.3 2.5 维人机交互式正反演 |
5.2 多尺度深部地球物理勘查 |
5.2.1 电磁法勘查 |
5.2.2 井中地球物理勘查 |
5.3 综合地球物理勘查 |
5.4 地球物理对岩浆通道识别 |
第6章 找矿模型及预测 |
6.1 成矿模式 |
6.1.1 红旗岭 |
6.1.2 漂河川 |
6.1.3 长仁-獐项 |
6.2 综合找矿模型 |
6.2.1 地质模型 |
6.2.2 地球物理模型 |
6.2.3 找矿评价指标 |
6.2.4 找矿方向 |
6.3 找矿预测 |
6.3.1 红旗岭A级找矿远景区 |
6.3.2 漂河川A级找矿远景区 |
6.3.3 长仁-獐项A级找矿远景区 |
6.3.4 六颗松B级找矿远景区 |
结论 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(6)华北克拉通胶北地体多期高级变质事件:来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据(论文提纲范文)
0 引言 |
1 地质背景 |
2 分析方法 |
3 野外地质关系与岩石学特征 |
4 锆石阴极发光图像特征 |
4.1 石榴斜长角闪岩(19LR53-1) |
4.2 花岗质浅色体(19LR53-2) |
5 锆石LA-ICP-MS U-Pb定年 |
5.1 石榴斜长角闪岩(19LR53-1) |
5.2 花岗质浅色体(19LR53-2) |
6 锆石稀土元素组成与特征 |
6.1 石榴斜长角闪岩(19LR53-1) |
6.2 花岗质浅色体(19LR53-2) |
7 讨论 |
7.1 胶北新太古代晚期变质事件时代与性质 |
7.2 胶北太古宙变质基底再造与古元古代变质 |
7.3 胶北多期地壳深熔事件的时代 |
8 初步结论 |
(7)吉林省镁铁质-超镁铁质岩特征及成矿作用研究(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 研究区范围及自然地理概况 |
1.2 论文选题意义及依托项目 |
1.3 研究现状及存在问题 |
1.3.1 岩浆铜镍硫化物矿床研究现状 |
1.3.2 吉林省铜镍硫化物矿床勘查及研究现状 |
1.3.3 存在主要问题 |
1.4 研究思路与方法 |
1.5 实验测试方法 |
1.6 完成的主要实物工作量 |
1.7 主要研究认识 |
第2章 区域地质背景 |
2.1 大地构造位置 |
2.2 区域地层 |
2.2.1 太古宇 |
2.2.2 古元古界 |
2.2.3 新元古界 |
2.2.4 古生界 |
2.2.5 中生界 |
2.2.6 新生界 |
2.3 区域构造 |
2.3.1 伊通—舒兰断裂 |
2.3.2 辉发河—古洞河断裂 |
2.3.3 敦化-密山断裂 |
2.3.4 集安—两江断裂 |
2.4 区域侵入岩 |
2.4.1 太古宙 |
2.4.2 元古代 |
2.4.3 古生代 |
2.4.4 中生代 |
2.4.5 新生代 |
2.5 区域变质岩 |
2.5.1 新太古代 |
2.5.2 古元古代 |
2.5.3 新元古代 |
2.5.4 早古生代 |
2.6 区域矿产分布 |
第3章 镁铁质-超镁铁质岩产出的地球动力学背景 |
3.1 太古宙陆核的形成与发展 |
3.1.1 华北克拉通太古宙陆核演化发展过程 |
3.1.2 华北克拉通基底形成与演化 |
3.2 辽吉洋演化阶段 |
3.2.1 “辽吉洋”大地构造属性 |
3.2.2 “辽吉洋”的构造演化 |
3.3 哥伦比亚超大陆裂解 |
3.3.1 样品采集及岩相学特征 |
3.3.2 年代学与Hf同位素特征 |
3.3.3 地球化学元素特征 |
3.3.4 岩石成因及构造环境 |
3.4 古亚洲洋构造域演化 |
3.4.1 古亚洲洋最终闭合 |
3.4.2 古亚洲洋闭合后的伸展 |
3.5 环太平洋构造域演化 |
3.5.1 样品采集及岩相学特征 |
3.5.2 年代学特征 |
3.5.3 地球化学特征 |
3.5.4 岩石成因及岩浆源区性质 |
3.5.5 成岩构造背景 |
3.6 吉林地区与镁铁质-超镁铁质岩相关的构造演化史 |
第4章 镁铁质-超镁铁质岩特征及典型矿床研究 |
4.1 吉林地区镁铁质-超镁铁质岩特征 |
4.2 典型铜镍硫化物矿床研究 |
4.2.1 小陈木构铜镍硫化物矿床 |
4.2.2 赤柏松铜镍硫化物矿床 |
4.2.3 中-晚三叠世铜镍硫化物矿床 |
4.2.4 早侏罗世铜镍硫化物矿床成矿潜力分析 |
第5章 区域成矿条件与成矿规律 |
5.1 区域成矿条件 |
5.1.1 地层条件 |
5.1.2 构造条件 |
5.1.3 岩浆岩成矿专属性 |
5.2 成矿规律 |
5.2.1 时空分布规律 |
5.2.2 矿化富集规律 |
5.3 找矿潜力与找矿方向 |
5.3.1 找矿潜力评价 |
5.3.2 找矿方向 |
第6章 结论 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(8)南秦岭构造带旬阳坝地区角闪岩相变质岩系岩石学、地球化学特征及其地质意义(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.3 研究内容 |
1.4 研究方法 |
1.5 研究工作量 |
第二章 南秦岭构造带旬阳坝区域地质背景 |
2.1 秦岭构造带及北秦岭构造带简介 |
2.2 南秦岭构造带及扬子板块北缘概况 |
2.3 周缘地块研究概况 |
2.3.1 武当地块 |
2.3.2 佛坪穹窿 |
第三章 旬阳坝变质岩岩相学研究 |
3.1 露头岩性概述 |
3.2 岩石-岩相学特征 |
3.2.1 片岩 |
3.2.2 大理岩 |
3.2.3 角闪岩 |
第四章 旬阳坝变质岩地球化学分析 |
4.1 实验流程及分析方法 |
4.1.1 样品全岩粉末的制备 |
4.1.2 主量元素测试流程 |
4.1.3 微量元素测试流程 |
4.1.4 锆石U-Pb同位素测试流程 |
4.2 旬阳坝变质岩的主量元素和微量元素 |
4.2.1 主量元素地球化学特征 |
4.2.2 微量元素地球化学特征 |
第五章 锆石U-Pb同位素定年分析 |
5.1 锆石形态学及微量元素特征 |
5.1.1 角闪岩中锆石特征 |
5.1.2 片岩中锆石特征 |
5.2 锆石U-Pb同位素测定结果 |
5.2.1 角闪岩中锆石特征 |
5.2.2 片岩中锆石特征 |
5.3 锆石Hf同位素特征 |
5.4 基于锆石测定结果的讨论 |
第六章 旬阳坝角闪岩相变质岩系的构造属性及构造演化特征 |
6.1 旬阳坝变质岩构造归属 |
6.2 扬子板块和南秦岭构造带的构造关系 |
结论 |
参考文献 |
攻读硕士学位期间取得的科研成果 |
致谢 |
(9)海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及选题依据 |
1.2 研究现状及存在的问题 |
1.3 研究思路与拟解决的关键问题 |
1.3.1 研究思路 |
1.3.2 拟解决的关键问题 |
1.4 论文依托的科研项目与工作量 |
1.4.1 论文依托的科研项目 |
1.4.2 论文主要工作量 |
第2章 区域地质概况 |
2.1 中国东北区域构造格架 |
2.1.1 额尔古纳地块 |
2.1.2 兴安地块 |
2.1.3 松辽地块 |
2.1.4 佳木斯-兴凯地块 |
2.1.5 那丹哈达地体 |
2.2 研究区地质背景 |
2.2.1 区域构造 |
2.2.2 区域地层 |
2.2.3 区域岩浆岩 |
第3章 样品的地质与岩相学特征 |
3.1 布达特群 |
3.2 塔木兰沟组 |
3.3 铜钵庙组 |
3.4 南屯组一段 |
3.5 南屯组二段 |
第4章 海拉尔-塔木察格盆地中生代火山岩的年代学 |
4.1 分析方法 |
4.1.1 样品制备 |
4.1.2 锆石内部结构分析 |
4.1.3 LA-ICP-MS锆石U-Pb定年 |
4.2 定年结果 |
4.2.1 布达特群 |
4.2.2 塔木兰沟组 |
4.2.3 铜钵庙组 |
4.2.4 南屯组一段 |
4.2.5 南屯组二段 |
4.3 年代学讨论 |
4.3.1 海拉尔-塔木察格盆地火山-沉积地层的形成时代 |
4.3.2 东北地区中生代岩浆活动的时空分布规律 |
第5章 海拉尔-塔木察格盆地火山岩的地球化学 |
5.1 分析方法 |
5.1.1 全岩主量与微量元素分析方法 |
5.1.2 全岩Sr-Nd同位素分析方法 |
5.1.3 锆石Hf同位素分析方法 |
5.2 地球化学特征 |
5.2.1 中侏罗世高钾埃达克质火山岩 |
5.2.2 晚侏罗世早期低钾埃达克质火山岩 |
5.2.3 晚侏罗世晚期富铌玄武安山岩 |
5.2.4 晚侏罗世-早白垩世高硅火山岩 |
5.2.5 早白垩世晚期高镁埃达克质火山岩 |
5.3 岩石成因 |
5.3.1 中侏罗世高钾埃达克质火山岩 |
5.3.2 晚侏罗世早期低钾埃达克质火山岩 |
5.3.3 晚侏罗世晚期富铌玄武安山岩 |
5.3.4 晚侏罗世-早白垩世高硅火山岩 |
5.3.5 早白垩世晚期高镁埃达克质岩石 |
第6章 中生代岩浆活动的地球动力学 |
6.1 中侏罗世岩浆活动与蒙古-鄂霍茨克洋的闭合 |
6.2 晚侏罗世早期岩浆活动与古太平洋板块的平板俯冲 |
6.3 晚侏罗世晚期-早白垩世早期岩浆活动与古太平洋板块的回卷 |
6.4 早白垩世晚期岩浆活动与岩石圈的拆沉 |
第7章 结论与问题 |
7.1 主要结论 |
7.2 主要创新点 |
7.3 存在问题与建议 |
参考文献 |
附录 |
作者简介及在学期间所取得的科研成果 |
致谢 |
(10)天然石墨的成因、晶体化学特征及对石墨烯产业化的约束(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 选题背景和立题思想 |
1.2 课题来源及选题意义 |
1.3 研究思路和研究方法 |
1.3.1 研究思路 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 研究内容和研究目标 |
1.4.1 研究内容 |
1.4.2 研究目标 |
1.4.3 研究计划安排 |
1.4.4 主要工作量 |
1.5 研究成果与创新点 |
1.5.1 主要研究成果 |
1.5.2 创新点与特色 |
第2章 相关问题研究现状分析 |
2.1 石墨矿床研究现状分析 |
2.1.1 国外石墨矿床研究现状分析 |
2.1.2 国内石墨矿床研究现状分析 |
2.2 石墨矿物学研究现状分析 |
2.2.1 国外石墨矿物学研究现状分析 |
2.2.2 国内石墨矿物学研究现状分析 |
2.3 石墨烯制备研究现状分析 |
2.3.1 石墨烯 |
2.3.2 国内外石墨烯制备研究现状分析 |
2.4 石墨烯产业化现状分析 |
2.4.1 石墨烯产业化 |
2.4.2 国外石墨烯产业化现状分析 |
2.4.3 国内石墨烯产业化现状分析 |
2.5 小结 |
第3章 石墨矿地质矿产特征 |
3.1 石墨资源概况 |
3.1.1 石墨工业类型 |
3.1.2 全球石墨资源概况 |
3.1.3 中国石墨资源概况 |
3.2 石墨矿床主要类型 |
3.2.1 深变质石墨矿床 |
3.2.2 浅变质石墨矿床 |
3.2.3 接触变质石墨矿床 |
3.2.4 重熔花岗岩浆型石墨矿床 |
3.2.5 伟晶岩脉型石墨矿床 |
3.3 石墨矿成矿地质背景 |
3.3.1 全球石墨矿成矿背景 |
3.3.2 中国石墨矿成矿地质背景 |
3.4 石墨矿空间分布 |
3.4.1 全球石墨矿空间分布 |
3.4.2 中国石墨矿空间分布 |
3.5 石墨矿时间分布 |
3.5.1 全球石墨矿时间分布 |
3.5.2 中国石墨矿成矿时代 |
3.6 小结 |
第4章 典型石墨矿床 |
4.1 晶质(鳞片)石墨矿 |
4.1.1 全球鳞片石墨矿 |
4.1.2 黑龙江鸡西市柳毛石墨矿床 |
4.1.3 河南淅川县小陡岭石墨矿床 |
4.1.4 内蒙古兴和县黄土窑石墨矿床 |
4.1.5 山东平度市刘戈庄石墨矿床 |
4.2 脉型(块状、致密结晶状)石墨矿 |
4.2.1 全球脉型石墨矿 |
4.2.2 麻粒岩型石墨矿床(Granulite-hosted deposits) |
4.2.3 火成岩型石墨矿床(Igneous-hosted deposits) |
4.2.4 脉型石墨矿成矿作用 |
4.3 隐晶质(土状、无定形、微晶)石墨矿 |
4.3.1 全球隐晶质石墨矿 |
4.3.2 内蒙古大乌淀石墨矿床 |
4.3.3 湖南鲁塘石墨矿床 |
4.4 小结 |
第5章 天然石墨成矿过程 |
5.1 石墨的形成条件 |
5.1.1 热力学条件 |
5.1.2 碳源 |
5.1.3 前寒武纪生态系统 |
5.1.4 前寒武纪沉积建造 |
5.2 石墨矿床矿化特征 |
5.3 成矿模式 |
5.4 小结 |
第6章 典型矿床石墨矿物学 |
6.1 石墨晶体结构 |
6.2 石墨晶体特征 |
6.2.1 光学性质 |
6.2.2 X射线衍射谱线及晶胞参数 |
6.3 物理化学性质 |
6.3.1 物理性质 |
6.3.2 热效应 |
6.3.3 石墨化学组分 |
6.4 石墨物理化学参数 |
6.4.1 石墨化 |
6.4.2 石墨化程度 |
6.4.3 石墨化程度检验 |
6.4.4 变质相检验 |
6.5 小结 |
第7章 天然石墨对石墨烯产业化的约束 |
7.1 模型构建的依据及思路 |
7.1.1 天然石墨与石墨烯产业 |
7.1.2 天然石墨对石墨烯产业化的约束因素 |
7.1.3 模型构建的思路 |
7.2 石墨成矿地质特征的专属性 |
7.2.1 石墨矿石学 |
7.2.2 石墨岩系物源性质及沉积环境 |
7.2.3 石墨岩系变质及矿化蚀变 |
7.2.4 石墨碳同位素组成 |
7.2.5 地球动力学及生态演化 |
7.3 石墨晶体化学特征的专属性 |
7.4 天然石墨制备的氧化石墨(烯)和石墨烯的属性 |
7.4.1 天然石墨制备的氧化石墨(烯)的属性 |
7.4.2 天然石墨制备的石墨烯的属性 |
7.5 天然石墨制备的石墨烯的性能 |
7.5.1 天然石墨制备的石墨烯的电容性能 |
7.5.2 天然石墨制备的石墨烯的吸附性能 |
7.5.3 天然石墨制备的氧化石墨烯的吸附性能 |
7.6 石墨烯原料选择原则 |
7.6.1 天然石墨制备石墨烯的原料选择 |
7.6.2 石墨和石墨烯的结构表征 |
7.7 石墨烯的特性与应用前景 |
7.8 前沿新材料石墨烯的原料选取及品质控制的理论模型 |
7.8.1 天然石墨制备石墨烯原料选择的影响因素 |
7.8.2 物理模型构建 |
7.8.3 数学模型构建 |
7.9 小结 |
第8章 鳞片石墨制备石墨烯实证研究 |
8.1 实验 |
8.1.1 原料与化学试剂 |
8.1.2 氧化石墨(烯)制备 |
8.1.3 氧化石墨烯还原 |
8.1.4 结构表征方法 |
8.1.5 石墨烯的性能实验 |
8.2 结果与讨论 |
8.2.1 天然鳞片石墨的表征 |
8.2.2 氧化石墨烯和石墨烯的表征 |
8.2.3 石墨烯的导电性能 |
8.2.4 石墨烯超级电容性能 |
8.3 实验结论 |
8.4 理论模型验证 |
8.4.1 物理模型有效性分析 |
8.4.2 数学模型有用性分析 |
8.5 小结 |
第9章 石墨烯资源开发利用战略及建议 |
9.1 资源战略的界定 |
9.2 石墨烯资源开发利用战略分析 |
9.2.1 SWOT分析原理 |
9.2.2 石墨烯资源开发利用SWOT分析 |
9.3 资源勘查开发战略分析 |
9.3.1 石墨矿勘查战略 |
9.3.2 石墨矿开发战略 |
9.3.3 石墨提纯技术突破战略 |
9.3.4 前沿新材料石墨烯突破战略 |
9.4 石墨烯资源开发利用战略 |
9.4.1 石墨烯技术专利驱动战略 |
9.4.2 石墨烯资源产业集群式开发战略 |
9.4.3 石墨烯资源开发利用信息化战略 |
9.5 石墨烯资源开发利用政策及建议 |
9.5.1 产业倾斜政策 |
9.5.2 区域协调政策 |
9.5.3 健全完善环境法规和行业相关标准 |
9.5.4 建立石墨烯资源开发利用动态检测数据库 |
9.6 小结 |
第10章 结论与展望 |
10.1 主要研究成果 |
10.2 结论 |
10.3 展望 |
致谢 |
参考文献 |
附录 |
四、新疆太古宙变质岩系岩石组合特征(论文参考文献)
- [1]中-南阿尔金地区中-新元古代物质组成、年代学及构造演化[D]. 郝江波. 西北大学, 2021(12)
- [2]吉南夹皮沟地区太古宙表壳岩变质作用研究[D]. 刘根驿. 吉林大学, 2021(01)
- [3]辽东连山关地区早前寒武纪构造演化与铀成矿作用研究[D]. 吴迪. 吉林大学, 2021
- [4]敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应[D]. 甘保平. 西北大学, 2021(12)
- [5]吉林省中东部中生代岩浆铜镍硫化物矿床地质地球物理找矿模型及预测研究[D]. 许志河. 吉林大学, 2020(03)
- [6]华北克拉通胶北地体多期高级变质事件:来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据[J]. 刘平华,田忠华,文飞,周万蓬,王义龙. 地球科学, 2020(09)
- [7]吉林省镁铁质-超镁铁质岩特征及成矿作用研究[D]. 薛昊日. 吉林大学, 2020(01)
- [8]南秦岭构造带旬阳坝地区角闪岩相变质岩系岩石学、地球化学特征及其地质意义[D]. 王磊. 西北大学, 2020(02)
- [9]海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究[D]. 纪政. 吉林大学, 2020(08)
- [10]天然石墨的成因、晶体化学特征及对石墨烯产业化的约束[D]. 刘剑. 中国地质大学(北京), 2017(11)