一、碎石桩在公路软土地基处理中的应用(论文文献综述)
董炳寅,水伟厚,秦劭杰[1](2022)在《中国强夯40年之技术创新》文中研究指明强夯法是一种经济高效、节能环保的地基处理方法。强夯法加固地基可提高地基强度、降低压缩性、消除湿陷性、提高抗液化能力。我国自1975年开始介绍并引进强夯技术,1978年左右开始真正工程实践,距今已有40年。这40年中我国工程界先后将强夯技术应用于山区高填方、围海造地等场地形成后的地基处理和湿陷性黄土、淤积土、砂土、粉质黏土等原地基处理,取得了良好的加固效果,具有明显的社会效益和经济效益。同时,工程建设中的山区高填方地基、开山块石回填地基、炸山填海、吹砂填海等工程也越来越多,需要加固处理的填土厚度也越来越大,为了能经济高效地处理这些具有复杂地质条件的场地,强夯加固技术向高能级和多元化发展。本文从强夯加固理论、高能级强夯技术、复合强夯加固技术三方面梳理了我国强夯工程实践和研究现状,在此基础上提出了对强夯技术的发展展望。
李玉宝[2](2021)在《公路软土处理中CFG桩的应用及效益评价》文中研究说明为了提高公路软土处理的效果,介绍了CFG桩的主要特点,并从施工准备工作、CFG桩的配置和灌注、截桩、褥垫层施工、质量检测等方面对其施工技术进行了分析,提出了施工注意事项,对其经济效益进行评价。结果表明,CFG桩在公路软土处理中的经济效益明显,可有效降低施工成本,确保软土处理质量。
杨天琪[3](2021)在《临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测》文中提出随着我国经济的高速发展,"一带一路"和交通强国战略的提出,全面开放新格局的形成,我国公路建设的规模体量不断扩大,对公路建设提出了更高的要求。云南省地处我国西南边境,与越南、缅甸、老挝相接壤,隔望印度洋和太平洋,是“一带一路”连接交汇的重要战略节点,而在云南地区广泛分布着软土、红黏土、膨胀土等不良性质的特殊性土,对工程建设造成了很大的困难。本文依托云南省临清高速公路工程,对该项目河谷区软硬交错互层多层软土地基土体特性进行了2年的现场监测试验,采集实测数据两万余个,对河谷区多层软土地基路基沉降进行了分析与预测,并运用有限差分软件FLAC3D进行数值模拟分析,论文主要取得了如下研究成果:(1)揭示了河谷区多层软土地基工程性质变化特征针对云南省临清高速河谷地区多层软土地基软硬层反复交替沉积的特殊工程地质条件,分析了该河谷区多层软土地基的地层成因、分布规律及工程性质;根据地层特征、工程性质把该地区软土地层分成了浅、深、夹层型三种地基类型;阐明了强夯垫层法、堆载预压法以及强夯垫层联合静压堆载法的加固机理。(2)基于现场监测数据分析了临清高速公路复杂沉积环境软土强夯加固地基路基10个典型监测断面沉降及固结变化规律基于实测数据,分析了河谷区多层软土地基的沉降变化规律及固结特征;通过静力触探试验评价了强夯垫层联合堆载静压法对河谷区多层软基的加固效果;根据地基数据反馈,针对强夯垫层法加固河谷区多层软基施工工艺提出了改进建议;提出在深厚软基上进行工程建设应重视地基的侧移与稳定性问题。(3)模拟计算并分析了河谷区多层软土强夯加固地基路基沉降时空变化特征通过FLAC3D数值计算,对比分析了实测数据与数值计算结果,验证了模型的正确性;揭示了河谷区多层软土强夯加固地基的沉降形态特征;通过沉降-孔压曲线分析了软土地基的固结规律并推导了固结公式;建立了多种工况模型,分析了不同地基处理方法针对河谷区多层软土地基加固效果与适用性。(4)建模预测了河谷区多层软土强夯加固地基路基沉降发展趋势论述了沉降预测基本原理,对比分析了多种沉降预测模型的优缺点;提出了最适合河谷区多层软土地基沉降预测的Asaoka方法;修正了分层总和法针对河谷区多层软土地基沉降预测;发现数据样本的选取将显着影响沉降预测精度。
刘声钧[4](2021)在《堆载预压-固结排水泥炭土地基处理技术应用研究》文中认为泥炭土(泥炭和泥炭质土的统称)是由有机残体、矿物质和腐殖质组成的特殊土。泥炭土具有孔隙比大、含水率高、压缩性强、抗剪强度低和次固结变形显着的特点,是一种工程性质极差的特殊软土。据统计,泥炭土广泛分布于全世界59个国家和地区,总面积高达415.3万km2以上,约占地球陆地面积的5%~8%。在我国“一带一路”战略及全球多个国家大规模发展基础设施建设的驱动下,中国的海外公路建设事业迅猛发展,涉及泥炭土的工程活动越来越多,大量拟建、在建的高速公路难以避开深厚泥炭土层,在泥炭土地基上修筑高速公路通常面临着路堤沉降量过大、工后沉降显着的问题。目前,国内外关于高速公路泥炭土地基处理的工程实践较少,可借鉴的经验不多,在选择高速公路泥炭土地基处理方案时缺乏理论指导。因此,探寻适用于高速公路泥炭土地基的软基处理方法具有重要的理论价值和现实意义。本文以斯里兰卡CKE(Colombo-Katunayake Expressway)高速公路工程为依托,基于现场监测资料分析、室内试验,分析了堆载预压-排水固结法在高速公路深厚泥炭土地基中的适用性及可行性。具体研究内容及结论如下:(1)对已有地质资料进行了收集和整理,分析了斯里兰卡CKE项目沿线泥炭土的物理力学特性;对超载预压法、砂(碎石)桩-超载预压法和塑料排水带-超载预压法在深厚泥炭土地基中的设计及施工情况进行了详细的介绍。(2)依据CKE项目现场监测资料,分析了泥炭土地基填筑预压期的地表沉降、地表水平位移速率和长达6年的工后沉降变化规律;在实测沉降资料的基础上,利用Asaoka法和改进Asaoka法对典型断面泥炭土地基的固结系数进行了反算;分析了四种软基处理方法的经济性、施工难度和施工工期差异。最后,综合上述研究成果,评价了四种软基处理方法在深厚泥炭土地基中的适用性及可行性。(3)利用自制模型箱开展了砂桩-超载预压法联合处理泥炭土地基的室内模型试验,量化了砂桩面积置换率与泥炭土地基地表沉降、孔隙水压力变化规律及不排水抗剪强度变化规律之间的关系。(4)利用室内一维固结试验模拟超载预压法的施工过程,研究了不同超载比作用下泥炭土地基的变形特性;基于软土次固结计算理论,研究了采用超载预压法对泥炭土地基进行处理时超载比的合理取值。研究结果表明:超载预压可以降低泥炭土地基的工后沉降。超载比越大,卸除超载后,泥炭土地基次固结系数衰减越明显,工后沉降越小。超载卸除后,泥炭土的变形经历了三个阶段:主回弹阶段,稳定阶段和次固结阶段。在采用超载预压法对泥炭土地基进行处理时,超载比取0.25即可满足工程要求,过大的超载比是没有必要的。
韩袁林[5](2020)在《论压密注浆碎石桩技术在公路软基处理中的应用》文中研究指明随着高速公路的大规模建设,工程中遇到的软基问题越来越多,结合工程实例,分析了加固方案的选取及原理,阐述了公路软土路基压密注浆处理设计及施工要求,为类似工程提供借鉴。
韩耀华[6](2020)在《软基处理施工技术在公路工程施工中的应用》文中提出近年来,越来越多的公路工程建设过程中会面临软土地基,与其他地基类型相比,软土地基会进一步加大公路工程的施工难度。软土的特殊性质会导致软土地基的强度与承载力不足,为保障公路工程的结构质量,在施工过程中必须对软土地基进行相应的加固处理,避免软土地基处理不当使公路工程出现质量问题。基于此,分析了在公路工程施工中软土地基处理面临的问题,探讨了几种软土地基处理技术的具体应用,以保障软土地基的处理效果。
张德明[7](2020)在《公路施工中软土地基处理技术分析及应用解析》文中指出公路施工中遇到软土地基需要采取恰当的技术手段予以处理,以改善软土地基存在的危害,保障公路项目得以稳定有序地施工,维系后续安全可靠运行。在公路工程软土地基施工处理中,选择恰当适宜的处理技术手段至关重要,如果处理方式不当,不仅会耗时耗力,还有可能难以达到理想的改良效果。基于此,本文在分析阐述公路施工软土地基危害的基础上,首先明确软土地基处理要求,其次重点介绍常用的一些处理技术,最后探讨处理技术应用注意事项,以供参考。
李建喜,康超,李玉峰[8](2020)在《碎石桩处理软土地基的现状及趋势分析》文中认为碎石桩处理软土地基技术到今天已经有80多年的时间,与最开始相比施工设备和施工工艺都有了长足的发展;大量的工程实践经验也使得国内外学者们对碎石桩的理论研究与分析进行更深层次的探索;本文对软土地基上碎石桩的设计参数及施工技术进行研究,得到具有指导意义的锤击沉管法碎石桩施工工艺,总结出了处理软土地基的目标要求;最后由上述对该技术现状的分析可以看出,在应用层面上仍处在半理论半经验的水平,对于碎石桩处理软土地基的效果及实际施工过程中的施工技术控制有待深入研究。
田园园[9](2020)在《安九公路软土地基处理方案选择及变形研究》文中提出修建公路时,不可避免的会遇到一些软土地基,尤其在一些沿海、湖泊多的地区,软土地基特别常见。路堤沉降和失稳是工程上经常会遇到的问题,如何解决在修建公路时因软土地基造成的的沉降问题,提高地基的稳定性,是一个亟待解决的事情。本文结合了国内外对软土地基的研究现状,对软土的成因、分布和处理方法进行了分析研究,并依托安九二期公路工程的K195—K395段软土工程资料,对该工程的工程概况进行分析,采用层次分析法和专家打分法结合的方式,从造价、工期、处理效果、环境影响、施工难度和机械设备六个方面对水泥搅拌桩、管桩和塑料排水板三种常用的软基处理方式进行了计算分析。通过计算十位专家的总排序权重值,结果表明,水泥搅拌桩为处理该软土地基的最优处理方案。本文采用PLAXIS有限元软件对K195—K395段的施工过程进行数值模拟,分析其沉降量和路堤坡脚处的侧向位移变化规律,并同该工程的监测值进行对比,最后并从水泥搅拌桩的桩间距、桩长、桩的刚度,砂垫层和土工格栅等因素对地基沉降、侧向的影响进行分析,得出以下结论:(1)通过PLAIXS有限元对使用水泥搅拌桩处理前后的数值模拟,结果表明:水泥搅拌桩可以有效地加固软土地基,提高软土地基的承载力,使地基沉降值和侧向位移值大大减小;随着路堤的填筑,沉降值和侧向位移也随之增大。(2)与工程中的监测数据进行对比分析,可以发现:通过PLAXIS有限元软件数值模拟出的结果与工程监测的结果相比有一些微小差距,这是由于模型简化的原故,但总体趋势基本一致,表明PLAIXS有限元软件的模拟是可行的。(3)对水泥搅拌桩的桩间距、桩长、桩的刚度以及砂垫层和土工格栅等影响因素进行分析,结果表明:桩间距对沉降值和侧向位移影响较小,随着桩间距的减小沉降值和侧向位移随之增加;桩的长度对沉降值和侧向位移影响较大,长度越大,沉降值和侧向位移越小;沉降值和侧向位移会随着刚度的增加而减小,但变化不明显;砂垫层和土工格栅对沉降值和侧向位移都有所抑制,但砂垫层主要对减小沉降值有明显的作用,土工格栅对侧向位移抑制效果较好。图37表20参32
许飞[10](2020)在《公路软土路基加固处理及沉降分析》文中提出随着我国经济水平快速发展,交通量日益增大,大量的公路建设往往会遇到各种不同的地质情况,其中软土给公路建设带来了较大的麻烦,成为公路建设过程中必须解决的问题。由于软土的特性,导致软土路基强度低、稳定性差,路基是路面的基础,必须要有足够的强度及稳定性。所以对地基进行加固处理显得十分重要,如果不对地基进行合理的处理,路基产生较大的沉降变形,使得道路无法正常使用,为了保证公路在使用时安全舒适,在公路设计和施工时需要严格要求控制沉降。在国内外研究的基础上,对几种常用处理方法的加固原理和施工技术进行研究分析,并对这些处理方法的适用范围、处理深度、施工进度、施工成本进行对比分析。以滁来全快速通道为案例简述其软土的分布和加固处理方法的选择,然后选取土工格栅和水泥搅拌桩复合加固断面建立有限元模型,模拟整个施工过程。并且分别对案例中使用的土工格栅和水泥搅拌桩两种加固方法进行研究分析,最后分析讨论不同因素对路基沉降的影响。所得的结论成果如下:(1)基于滁来全快速通道建设项目,经土工格栅和水泥搅拌桩复合加固后,路基的沉降和侧向位移明显减小,降低了地基中土体的竖向应力水平。(2)通过ABAQUS软件数值模拟,分别对土工格栅和水泥搅拌桩两种加固方法进行分析。对土工格栅加固分析,分析结果为:在路堤底部和路堤底部向下0.5m处加土工格栅对于路基沉降的影响很小,对路基侧向位移减小较明显,随着土工格栅层数的增加对路基侧向位移的减小可以叠加;对水泥搅拌桩加固分析,分析结果为:水泥搅拌桩能有效的降低路基的沉降和侧向位移。(3)基于ABAQUS软件数值模拟,对路基沉降的不同影响因素分析。对桩模量、桩间距、桩长进行分析,分析结果为:桩长变化对路基沉降的影响最大,桩模量、桩间距变化对路基沉降影响次之,当桩模量较大时,继续增加桩模量对路基沉降影响变弱,当桩间距较小时,继续减小桩间距对路基沉降影响也变弱;对淤泥层模量、淤泥层粘聚力、淤泥层摩擦角、淤泥层渗透系数进行分析,分析结果为:淤泥层渗透系数变化对路基沉降影响较大,淤泥层模量变化对路基沉降的影响较小,淤泥层粘聚力和摩擦角对路基沉降影响可以忽略不计;对桩端以下土层的模量、粘聚力、摩擦角进行分析,分析结果为:模量和摩擦角变化对路基沉降影响较大,粘聚力变化对路基沉降影响较小;对路堤填土速率、路堤施工间歇进行分析,分析结果为:填土速率和路堤施工间歇变化对路基沉降影响都较大,路堤施工时需要严格控制好填土速率和施工间歇;对路堤填土高度进行分析,分析结果为:路堤填土越高路基沉降越大,路堤填土高度对路基沉降影响很大。图:[58]表:[27]参:[51]。
二、碎石桩在公路软土地基处理中的应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、碎石桩在公路软土地基处理中的应用(论文提纲范文)
(1)中国强夯40年之技术创新(论文提纲范文)
0 引言 |
1 强夯理论的发展 |
1.1 强夯加固的动力固结理论 |
1.2 强夯加固机理的微观解释 |
1.3 强夯加固软土地基的探讨 |
1.4 强夯置换理论 |
1.5 对国内各规范强夯章节的评述 |
2 高能级强夯技术的发展 |
2.1 高能级强夯加固机理 |
2.2 高能级强夯技术的应用 |
2.3 高能级强夯有效加固深度 |
3 复合强夯加固技术的发展 |
3.1 砂桩-强夯法 |
3.2 碎石桩-强夯法 |
3.3 堆载预压-强夯法 |
3.4 真空井点降水-强夯法 |
3.5 排水板+管井降水+强夯法 |
3.6 真空预压-强夯法 |
3.7 孔内强夯法 |
4 高能级强夯在超高超深填方分层处理中的实例应用 |
4.1 原场地地基处理 |
4.2 高填方填筑体处理 |
4.3 挖填交接面、施工搭接面处理 |
4.4 地下排渗系统设置 |
5 强夯技术的发展展望 |
6 结论 |
(2)公路软土处理中CFG桩的应用及效益评价(论文提纲范文)
0 引言 |
1 CFG桩的主要特点 |
1.1 应用范围广 |
1.2 承载力好 |
1.3 有效控制沉降 |
2 CFG桩在公路软土处理中的应用 |
2.1 施工准备工作 |
2.2 混合料配比及灌注 |
2.3 截桩、褥垫层 |
2.4 质量检测 |
3 施工注意事项 |
3.1 堵管 |
3.2 断桩 |
3.3 窜孔 |
4 效益评价 |
5 结语 |
(3)临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测(论文提纲范文)
致谢 |
中文摘要 |
ABSTRACT |
1 引言 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 河谷区多层软土地基研究现状 |
1.2.2 软土地基处理方法研究现状 |
1.2.3 软土地基沉降分析与预测研究现状 |
1.3 论文主要研究内容和技术线路 |
1.3.1 主要研究内容 |
1.3.2 研究方法 |
1.3.3 技术线路 |
2 河谷区多层软土地基工程特性分析 |
2.1 工程背景 |
2.1.1 项目概况 |
2.1.2 地层岩性 |
2.1.3 区域地质构造 |
2.1.4 水文地质条件 |
2.2 河谷区多层软土地基工程特性分析 |
2.2.1 地层成因 |
2.2.2 分布规律 |
2.2.3 工程性质 |
2.3 强夯垫层联合堆载静压法加固软土地基机理分析 |
2.3.1 软土地基处理方法 |
2.3.2 强夯垫层法加固机理 |
2.3.3 堆载静压法加固机理 |
2.3.4 强夯垫层联合堆载预压法加固机理 |
2.4 本章小结 |
3 河谷区多层软土强夯加固地基现场监测试验 |
3.1 软基处理段简介 |
3.2 监测测点平面分布 |
3.3 监测测点剖面分布 |
3.4 检测元件的埋设与监测 |
3.4.1 分层沉降监测 |
3.4.2 孔隙水压力监测 |
3.4.3 土压力监测 |
3.4.4 侧向位移监测 |
3.5 强夯垫层法设计参数与工艺 |
4 河谷区多层软土强夯加固地基固结沉降变化特征分析 |
4.1 强夯加固河谷区多层软土地基沉降规律研究 |
4.1.1 软土地基在各阶段沉降形态特征研究 |
4.1.2 不同类型软土地基分层沉降规律研究 |
4.1.3 沉降变化规律分析 |
4.2 强夯加固软土地基孔隙水压力与固结规律研究 |
4.2.1 软土地基各阶段超静孔隙水压力变化特征研究 |
4.2.2 不同类型软土地基固结特征研究 |
4.2.3 孔隙水压力变化与固结特征分析 |
4.3 强夯加固软土地基有效应力与加固效果研究 |
4.3.1 软土地基各阶段土压力变化特征研究 |
4.3.2 不同类型软土地基强夯加固效果分析 |
4.3.3 土压力与强夯加固效果分析 |
4.4 强夯加固软土地基土体侧向位移特征研究 |
4.4.1 软土地基不同深度土层侧向位移特征研究 |
4.4.2 不同类型软土地基侧向位移对比分析 |
4.4.3 侧向位移变化规律分析 |
4.5 本章小结 |
5 河谷区多层软土强夯加固地基路基沉降数值分析 |
5.1 FLAC3D软件综述 |
5.1.1 FLAC3D软件简介 |
5.1.2 流固耦合数值分析方法 |
5.1.3 非线性动力反应数值分析方法 |
5.2 强夯加固软基数值模型的建立与沉降分析 |
5.2.1 模型建立 |
5.2.2 强夯冲击荷载施加 |
5.2.3 强夯加固软基沉降变形特征分析 |
5.2.4 强夯加固软基孔隙水压力变化分析 |
5.2.5 强夯加固软土地基固结特征分析 |
5.2.6 各类型软土地基强夯加固效果对比分析 |
5.3 碎石桩加固软基数值模型建立与沉降分析 |
5.3.1 碎石桩加固相关参数的确定 |
5.3.2 碎石桩加固软基沉降变形特征分析 |
5.3.3 碎石桩加固软基孔隙水压力变化分析 |
5.3.4 碎石桩加固软基应力数值模拟分析 |
5.4 天然软土地基数值模型建立与沉降分析 |
5.4.1 模型建立 |
5.4.2 天然软基数值模型计算结果分析 |
5.5 不同加固方法条件下软土地基沉降与固结特征分析 |
5.6 本章小结 |
6 河谷区多层软土强夯加固地基沉降预测 |
6.1 高速公路路基沉降预测方法 |
6.1.1 分层总和法 |
6.1.2 经验公式法 |
6.1.3 Asaoka法 |
6.2 临清高速河谷区多层软土强夯加固地基路基沉降预测 |
6.2.1 分层总和法的沉降预测与修正 |
6.2.2 不同模型下软基沉降发展特征预测 |
6.2.3 Asaoka法预测 |
6.3 不同模型沉降预测结果对比与分析 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
索引 |
作者简历 |
学位论文数据集 |
(4)堆载预压-固结排水泥炭土地基处理技术应用研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 .国内外研究现状 |
1.2.1 排水固结法研究现状 |
1.2.2 砂(碎石)桩法研究现状 |
1.2.3 泥炭土地基处理研究现状 |
1.3 目前研究存在的不足 |
1.4 本文主要研究内容及技术路线 |
1.4.1 本文主要研究内容 |
1.4.2 技术路线 |
第2章 斯里兰卡CKE高速公路泥炭土地基处理设计与施工 |
2.1 工程概况 |
2.2 沿线环境地质情况 |
2.2.1 地形地貌特征 |
2.2.2 气象与水文情况 |
2.2.3 工程地质情况 |
2.3 沿线泥炭土基本物理力学指标 |
2.3.1 泥炭土分类 |
2.3.2 泥炭土的物理力学指标 |
2.4 CKE高速公路泥炭土地基处理工程的设计及施工介绍 |
2.4.1 泥炭土地基处理方案的选择原则 |
2.4.2 超载预压设计及施工概况 |
2.4.3 塑料排水板设计及施工概况 |
2.4.4 砂(碎石)桩设计及施工概况 |
2.5 本章小结 |
第3章 高速公路深厚泥炭土地基处理方法适用性研究 |
3.1 引言 |
3.2 地基沉降监测方案介绍 |
3.2.1 监测设备 |
3.2.2 监测点位的布设原则 |
3.2.3 监测频率 |
3.3 泥炭土地基监测资料分析 |
3.3.1 地表沉降监测资料分析 |
3.3.2 地表水平位移监测资料分析 |
3.3.3 工后沉降监测资料分析 |
3.4 不同处理方法对泥炭土地基固结系数的影响 |
3.5 不同处理方法的经济性、施工难度和工期分析 |
3.6 本章小结 |
第4章 砂桩-超载预压法联合处理泥炭土地基试验研究 |
4.1 引言 |
4.2 模型试验 |
4.2.1 模型箱 |
4.2.2 试验材料的选取 |
4.2.3 数据量测与采集系统 |
4.2.4 模型试验方案 |
4.3 模型试验结果分析 |
4.3.1 地表沉降变化规律 |
4.3.2 孔隙水压力消散规律 |
4.3.3 地基不排水抗剪强度增长规律 |
4.4 本章小结 |
第5章 泥炭土地基超载预压法处理的变形特性及超载比(R'_s)研究 |
5.1 引言 |
5.2 试样制作及一维固结试验方案 |
5.2.1 试样制作 |
5.2.2 一维固结试验方案 |
5.3 超载预压对泥炭土变形特性的影响 |
5.3.1 超载过程对总变形量的影响 |
5.3.2 超载卸除后的回弹变形研究 |
5.3.3 超载预压对泥炭土次固结变形的影响 |
5.4 最佳超载比(R'_s)的确定 |
5.4.1 软土次压缩量计算的基本理论 |
5.4.2 工程算例 |
5.5 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 攻读硕士学位期间的学术成果 |
(5)论压密注浆碎石桩技术在公路软基处理中的应用(论文提纲范文)
1 前言 |
2 阐述案例工程概述 |
2.1 分析比较加固方案 |
2.2 选取软基加固方法 |
2.3 注浆碎石桩优点 |
3 分析设计压密注浆碎石桩有关内容 |
4 阐述施工工艺和质量控制加固检测情况 |
4.1 设计方案参数 |
4.2 施工技术流程 |
4.3 加强施工质量控制 |
5 结语 |
(6)软基处理施工技术在公路工程施工中的应用(论文提纲范文)
1 公路软土路基施工中的问题 |
1.1 抗剪力不足 |
1.2 平整性较差 |
1.3 含水量较高 |
2 软基处理施工技术在公路工程施工中的应用 |
2.1 换土法 |
2.2 强夯法 |
2.3 表层处理技术 |
2.4 真空预压施工技术 |
2.5 高压喷射注浆法 |
2.6 排水固结施工技术 |
2.7 碎石桩加固技术 |
3 结束语 |
(7)公路施工中软土地基处理技术分析及应用解析(论文提纲范文)
1 公路施工中软土地基的危害性及其处理要求 |
1.1 软土地基的危害性分析 |
1.2 软土地基处理要求 |
2 公路施工中常用软土地基处理技术 |
2.1 换填处理技术 |
2.2 强夯置换处理技术 |
2.3 排水固结处理技术 |
2.4 复合地基加固处理技术 |
3 公路施工中软土地基处理技术应用要点 |
3.1 现场勘察 |
3.2 方案比选 |
3.3 规范技术操作 |
3.4 注重验收把关 |
4 结语 |
(8)碎石桩处理软土地基的现状及趋势分析(论文提纲范文)
0 引言 |
1 碎石桩的实践发展概况 |
2 碎石桩的应用和研究发展 |
2.1 碎石桩地基承载力及加固理论研究 |
2.2 碎石桩复合地基沉降观测研究 |
2.3 碎石桩传力特性的试验研究及其理论分析 |
2.4 碎石桩复合地基检测方法的研究 |
2.5 碎石桩复合地基中的桩土相互作用问题 |
2.6 碎石桩复合地基的新的发展和应用 |
3 碎石桩处理软土地基的研究方向 |
4 结语 |
(9)安九公路软土地基处理方案选择及变形研究(论文提纲范文)
摘要 |
ABSTRACT |
注释说明清单 |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 本文的研究内容 |
第二章 软土的工程特性及常用的处理技术 |
2.1 软土的工程特性 |
2.1.1 软土的定义 |
2.1.2 软土的类型 |
2.1.3 软土的分布 |
2.1.4 软土的工程性质 |
2.2 软土地基常用的处理方法 |
2.3 软土地基的沉降计算 |
2.3.1 分层总和法 |
2.3.2 考虑不同变形阶段的沉降计算 |
2.4 本章小结 |
第三章 层次分析法在软土地基处理方案选择上的应用 |
3.1 层次分析法 |
3.1.1 层次分析法的定义 |
3.1.2 层次分析法基本原理 |
3.1.3 层次分析法的计算步骤 |
3.2 层次分析法在软土地基处理方案选择上的应用 |
3.3 专家打分及构造判断矩阵 |
3.3.1 专家打分 |
3.3.2 数据处理 |
3.4 计算成对比较矩阵 |
3.4.1 MATLAB程序设计思路 |
3.4.2 使用MATLAB程序代码计算成对比较矩阵 |
3.4.3 计算结果 |
3.5 本章小结 |
第四章 PLAXIS有限元模型建立与分析 |
4.1 工程概况 |
4.2 有限元模型的建立 |
4.2.1 PLAXIS有限元软件简介 |
4.2.2 本构模型的选取 |
4.2.3 模型建立的步骤 |
4.3 数值模拟及结果分析 |
4.3.1 水泥搅拌桩处理前后的位移对比分析 |
4.3.2 路堤填土高度的影响分析 |
4.3.3 地表沉降与监测结果的分析 |
4.4 本章小结 |
第五章 软土地基变形的影响因素分析 |
5.1 水泥搅拌桩对地基变形的影响分析 |
5.1.1 水泥搅拌桩的桩间距对地基变形的影响分析 |
5.1.2 水泥搅拌桩的桩长对地基变形的影响分析 |
5.1.3 水泥搅拌桩的桩刚度对地基变形的影响分析 |
5.2 砂垫层对地基变形的影响分析 |
5.3 土工格栅对地基变形的影响分析 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(10)公路软土路基加固处理及沉降分析(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究的背景和意义 |
1.2 国内外研究现状 |
1.2.1 地基处理技术的研究现状 |
1.2.2 固结理论的研究现状 |
1.2.3 沉降计算方法的研究现状 |
1.3 本文主要研究内容及技术路线 |
1.3.1 本文的研究内容 |
1.3.2 研究技术路线 |
第二章 软土路基的工程性质和常用处理方法 |
2.1 软土路基的工程性质 |
2.1.1 软土的概念及类型 |
2.1.2 软土路基的沉降过程 |
2.2 常用加固处理方法 |
2.2.1 换填法 |
2.2.2 强夯法 |
2.2.3 土工合成材料法 |
2.2.4 袋装砂井排水法 |
2.2.5 塑料板排水法 |
2.2.6 真空预压法 |
2.2.7 水泥搅拌桩法 |
2.2.8 碎石桩法 |
2.3 常用加固处理方法对比分析 |
2.4 本章小结 |
第三章 有限元模型的建立与分析 |
3.1 工程概况 |
3.1.1 周边地形 |
3.1.2 软土的分布和加固措施 |
3.1.3 地质条件 |
3.2 有限元软件ABAQUS简述 |
3.2.1 概述 |
3.2.2 ABAQUS主要模块介绍 |
3.2.3 ABAQUS软件分析的流程 |
3.3 材料的本构模型 |
3.3.1 线弹性模型 |
3.3.2 Mohr-Coulomb塑性模型 |
3.4 有限元模型的建立 |
3.4.1 几何模型的建立 |
3.4.2 材料属性的定义 |
3.4.3 分析步的设置 |
3.4.4 施工过程的模拟 |
3.4.5 网格划分 |
3.5 数值模拟计算过程及结果分析 |
3.5.1 数值模拟计算过程 |
3.5.2 计算结果分析 |
3.6 加固处理分析 |
3.6.1 土工格栅加固 |
3.6.2 水泥搅拌桩加固 |
3.7 本章小结 |
第四章 路基沉降影响因素分析 |
4.1 水泥搅拌桩对路基沉降影响分析 |
4.1.1 桩体的模量对路基沉降影响 |
4.1.2 桩间距对路基沉降影响 |
4.1.3 桩长对路基沉降影响 |
4.2 淤泥层对路基沉降影响分析 |
4.2.1 淤泥层模量对路基沉降影响 |
4.2.2 淤泥层粘聚力对路基沉降影响 |
4.2.3 淤泥层摩擦角对路基沉降影响 |
4.2.4 淤泥层渗透系数对路基沉降影响 |
4.3 桩端以下土层对路基沉降影响分析 |
4.3.1 桩端以下土层模量对路基沉降影响 |
4.3.2 桩端以下土层粘聚力对路基沉降影响 |
4.3.3 桩端以下土层摩擦角对路基沉降影响 |
4.4 路堤施工时间对路基沉降影响分析 |
4.4.1 路堤填土速率对路基沉降的影响 |
4.4.2 路堤施工间歇对路基沉降的影响 |
4.5 路堤填土高度对路基沉降影响分析 |
4.6 本章小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
四、碎石桩在公路软土地基处理中的应用(论文参考文献)
- [1]中国强夯40年之技术创新[J]. 董炳寅,水伟厚,秦劭杰. 地基处理, 2022(01)
- [2]公路软土处理中CFG桩的应用及效益评价[J]. 李玉宝. 交通世界, 2021(23)
- [3]临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测[D]. 杨天琪. 北京交通大学, 2021(02)
- [4]堆载预压-固结排水泥炭土地基处理技术应用研究[D]. 刘声钧. 昆明理工大学, 2021(01)
- [5]论压密注浆碎石桩技术在公路软基处理中的应用[J]. 韩袁林. 运输经理世界, 2020(17)
- [6]软基处理施工技术在公路工程施工中的应用[J]. 韩耀华. 建筑技术开发, 2020(21)
- [7]公路施工中软土地基处理技术分析及应用解析[J]. 张德明. 城市建筑, 2020(24)
- [8]碎石桩处理软土地基的现状及趋势分析[J]. 李建喜,康超,李玉峰. 北方建筑, 2020(03)
- [9]安九公路软土地基处理方案选择及变形研究[D]. 田园园. 安徽建筑大学, 2020(01)
- [10]公路软土路基加固处理及沉降分析[D]. 许飞. 安徽建筑大学, 2020(01)