一、强夯法加固地基的数值模拟(论文文献综述)
苏亮[1](2021)在《大面积吹填陆域地基处理技术应用研究》文中认为吹填陆域作为围海造陆工程中最主要的陆域形式,发展吹填陆域是解决沿海城市经济发展需要与建设用地不足矛盾的有效途径,对于缓解我国人均土地面积短缺、疏浚海运航道等现实问题也有着重要意义。采用吹填陆域地基处理技术对吹填场地进行地基处理,是吹填陆域交付使用的前提,如何选择合理的吹填陆域地基处理技术有效加固吹填土地基一直是国内外学者研究的重难点。本文依托山东某人工岛(一期)地基处理工程,采用现场试验对大面积复杂吹填陆域的地基处理方法展开研究,并对“千层饼区”现场试验过程出现降水难的问题,提出明盲结合降水强夯法,利用有限差分软件FLAC3D建立数值模型,对该新工艺的加固效果进行系统的分析研究,主要的研究内容和成果如下:(1)根据吹填场地土层性质和土层分布特征,分析吹填料、吹填工艺、水力重力分选性和吹填口布设位置等因素对吹填土层分布特征的影响规律。结果表明:吹填场地根据土层分布情况可划分为砂土区、软土区和“千层饼区”,其分别对应的吹填位置为吹填口、冲淤区和回淤区,根据上述吹填陆域土层分布特征,可用于初步判断大面积吹填场地地质情况,具有一定的工程实用性。(2)基于吹填场地土层分布特征,通过对地基处理技术的适用性分析研究,提出在砂土区选用高能级强夯法,软土区选用直排式覆水真空预压法和“千层饼区”选用降水强夯法分别进行现场试验研究。结果表明:处理后,砂土区和“千层饼区”承载力特征值达到了120 k Pa且有效消除了饱和砂土和饱和粉土液化势,软土区承载力特征值达到了80 k Pa、十字板剪切强度平均值达到了15 k Pa且土体固结度在95%以上,各项指标均满足设计要求值,论证了选用的吹填陆域地基处理技术的适用性,确定了吹填陆域地基处理技术方案及设计参数,为人工岛(二期)地基处理工程加固方案提供实际指导意义,也可为类似吹填陆域选择地基处理技术提供参考意义。(3)针对强夯法处理吹填陆域时软土层和高地下水位对加固效果的影响进行试验研究,分析了砂土区中无软土层、表层软土层、中间软土层和下卧软土层对强夯加固效果的影响规律,和降水与未降水对强夯加固效果的影响规律。结果表明:软土层会明显阻碍夯击能传递,软土层分布位置不同对强夯加固效果影响程度不同,软土层分布越深,夯击能穿透软土层后衰减越大,建议当软土层较浅时,可通过增大强夯能级提高有效加固深度,当软土层较深时,通过增大强夯能级提高有效加固深度并不适宜,此时应选取其他地基处理方式;高地下水位会明显损耗夯击能,建议在高地下水位吹填陆域采用强夯处理时,应采取降水措施,为强夯法处理含软土层和高地下水位的吹填陆域地基提供了重要的实践依据。(4)采用降水强夯法处理“千层饼区”现场试验过程中,部分区域出现管井降水难的问题,本文提出“明盲结合降水强夯法”一种新工艺处理此类地基,运用有限差分软件FLAC3D建立明盲结合降水强夯法动态模拟数值模型,模拟连续夯击试验,得到孔隙水压力、土层有效应力和位移沉降变化规律。结果表明:在一次夯击周期过程中,当冲击荷载结束后,土体内孔隙水压力与有效应力变化规律符合太沙基有效应力原理,论证了数值模型的合理性。在多次夯击过程中,单击沉降量逐渐减小趋于稳定,证明夯击次数并不是越多越好,存在一个最优夯击次数,可满足加固效果的情况下同时保障工程的经济高效。在多次夯击过程中,相比较无排水沟一侧,临近明盲排水沟一侧的孔隙水压力数值更小,土体有效应力数值更大、影响范围也更广,证明明盲排水沟可加速孔隙水压力消散,增加土体水平和竖直方向加固范围,建议在降水强夯法中可用明盲排水沟作为新的排水体系,增强降水强夯法的加固效果,为明盲结合降水强夯法工程应用提供了重要的理论基础。
秦志光[2](2021)在《珊瑚礁砂地震液化特性与抗液化处理方法研究》文中指出珊瑚礁砂是由珊瑚礁岩体等经侵蚀、破碎并沉积的生物碎屑,与学术界所谓的钙质砂存在一定的差异。于工程所在地疏浚珊瑚礁岩土作为工程地基或基础,往往取材方便,可大幅降低建设成本并有效缩短工期。近年来我国企业在“一带一路”海上丝绸之路沿线海洋国家承担了越来越多的珊瑚礁砂吹填土工程建设。珊瑚礁砂全球分布广泛,遭受地震灾害的可能性较高,历史有记录以来地震过程中曾出现多次珊瑚礁砂土场地液化现象,并造成了严重的液化地质灾害与工程灾害。然而,目前关于珊瑚礁砂的液化可能性存在较大的争议,认为珊瑚礁砂场地不会液化或较难液化,珊瑚礁砂的液化特性尚没有研究清楚。另外,珊瑚礁砂场地较难液化并不等于不会液化,由于缺乏理论支持,工程实际中往往需要采取较高的抗液化地基处理措施,但是采用何种抗液化处理措施、如何评价抗液化处理效果,目前缺乏针对珊瑚礁砂地基的液化评价标准、填土地基形成及地基处理相关技术标准,若依据基于陆源砂的技术手段与方法,很可能低估珊瑚礁砂的抗液化能力,造成极大的浪费。本文对珊瑚礁砂开展动三轴试验、渗透试验、体积变形试验,分析珊瑚礁砂的抗液化强度、孔压增长与消散特征,探索密实法、排水法等抗液化地基处理措施的可行性、有效性、可靠性,建立基于原位测试指标的珊瑚礁砂地基液化评价方法与标准。论文主要完成了以下工作:(1)开展珊瑚礁砂动三轴试验,针对较普遍存在的动应力衰减现象进而容易给出明显高于实际抗液化强度的结果,根据等效循环振次的内涵与原理提出对实测振次进行校正的方法,分析级配、有效围压、固结比、相对密度以及橡皮膜嵌入效应等对珊瑚礁砂的抗液化强度的影响,为构建珊瑚礁砂液化评价标准提供试验依据。(2)探索珊瑚礁砂孔压增长规律,分析循环活动性的特点、形成条件以及对孔压发展的影响,甄选孔压增长计算模型并给出模型试验参数。(3)开展珊瑚礁砂渗透与体积变形试验,分析渗透特性的影响因素及其结果并据此建立珊瑚礁砂的渗透计算模型,给出相应的体积压缩系数,为珊瑚礁砂孔压增长与消散数值计算提供试验参数。(4)依托苏丹港、沙特RSGT、东帝汶等多个海内外珊瑚礁砂疏浚吹填土地基工程,探讨珊瑚礁岩土地基地层特征,分析强夯、振冲等密实法抗液化处理的有效加固深度、加固效果及地基承载力,建立有效加固深度计算经验关系公式或相关经验关系,建立基于原位测试指标的珊瑚礁砂液化评价判别方法与标准,并根据1993年关岛、2010年海地珊瑚礁砂地震液化实测标贯击数对临界曲线进行校准。(5)从经典液化机理解释以及体积相容方程出发,探讨排水法进行抗液化处理的理论依据,开展水平排水、竖向碎石桩排水等试验工况下的孔压增长与消散数值计算,给出“二元地质结构”填土场地不同土层厚度及地面高程的计算确定方法;对东帝汶珊瑚礁砂地基碎石桩排水法抗液化进行设计,确定碎石桩直径、间距等抗液化处理施工参数,分析碎石桩等排水法处理措施的有效性与影响因素。
杨天琪[3](2021)在《临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测》文中提出随着我国经济的高速发展,"一带一路"和交通强国战略的提出,全面开放新格局的形成,我国公路建设的规模体量不断扩大,对公路建设提出了更高的要求。云南省地处我国西南边境,与越南、缅甸、老挝相接壤,隔望印度洋和太平洋,是“一带一路”连接交汇的重要战略节点,而在云南地区广泛分布着软土、红黏土、膨胀土等不良性质的特殊性土,对工程建设造成了很大的困难。本文依托云南省临清高速公路工程,对该项目河谷区软硬交错互层多层软土地基土体特性进行了2年的现场监测试验,采集实测数据两万余个,对河谷区多层软土地基路基沉降进行了分析与预测,并运用有限差分软件FLAC3D进行数值模拟分析,论文主要取得了如下研究成果:(1)揭示了河谷区多层软土地基工程性质变化特征针对云南省临清高速河谷地区多层软土地基软硬层反复交替沉积的特殊工程地质条件,分析了该河谷区多层软土地基的地层成因、分布规律及工程性质;根据地层特征、工程性质把该地区软土地层分成了浅、深、夹层型三种地基类型;阐明了强夯垫层法、堆载预压法以及强夯垫层联合静压堆载法的加固机理。(2)基于现场监测数据分析了临清高速公路复杂沉积环境软土强夯加固地基路基10个典型监测断面沉降及固结变化规律基于实测数据,分析了河谷区多层软土地基的沉降变化规律及固结特征;通过静力触探试验评价了强夯垫层联合堆载静压法对河谷区多层软基的加固效果;根据地基数据反馈,针对强夯垫层法加固河谷区多层软基施工工艺提出了改进建议;提出在深厚软基上进行工程建设应重视地基的侧移与稳定性问题。(3)模拟计算并分析了河谷区多层软土强夯加固地基路基沉降时空变化特征通过FLAC3D数值计算,对比分析了实测数据与数值计算结果,验证了模型的正确性;揭示了河谷区多层软土强夯加固地基的沉降形态特征;通过沉降-孔压曲线分析了软土地基的固结规律并推导了固结公式;建立了多种工况模型,分析了不同地基处理方法针对河谷区多层软土地基加固效果与适用性。(4)建模预测了河谷区多层软土强夯加固地基路基沉降发展趋势论述了沉降预测基本原理,对比分析了多种沉降预测模型的优缺点;提出了最适合河谷区多层软土地基沉降预测的Asaoka方法;修正了分层总和法针对河谷区多层软土地基沉降预测;发现数据样本的选取将显着影响沉降预测精度。
邹梦超[4](2021)在《深厚回填土地基强夯加固处理研究分析》文中提出近年来,随着国家迅速发展,市内建设用地不断减少,用地冲突日益激增,采用“开山填谷”、“填海造地”等形成的地基逐渐被选用,但此类回填地基往往不能满足变形、稳定性和承载能力等建设要求,因而需对其进行处理,而强夯法操作简单、经济、环保,处理这类回填土有着巨大的优势,因此得到广泛应用。同时因强夯加固机理和回填土的复杂性,导致强夯理论远落后于工程实践,因此有必要对回填土特别是深厚回填粘性土地基进行相关研究,进而为后续类似工程提供一定的理论依据和经验。本文依托云南某项目,结合以往强夯资料与文献,对强夯加固机理及影响强夯加固效果因素进行了分析,主要内容和结论如下:(1)夯锤夯击土体时,夯坑周围发生隆起,土体也出现了较大的沉降量,单击沉降量随夯击时接触时间呈“S”型变化。表层土体(2m以内)的加固效果最好,土体沉降量与深度呈线性变化;在2m-4m范围内,土体沉降量随深度增大而缓慢减小,超过4m后,土体沉降量随深度增加而迅速减小。夯击后土体的压缩模量从5.3MPa增大到20MPa以上。(2)夯击能一定时,随着夯击次数的增加,土体沉降量也随之增大,但增幅变缓,本文的最佳夯击次数为第7击;并且重锤低落距(30t*20m)下夯击组合加固效果更好,采用小直径(1.4m)夯锤加固土体的深度较大,适用于浅层回填土。(3)其它参数相同,只改变夯击能级,发现土体沉降量和应力随夯击能的增大而增大。当夯击能级从4000k N·m增大到6000k N·m时,土体竖向位移量增幅为44.2%,而夯击能从6000k N·m增加到8000k N·m时,夯沉量增幅仅为8.1%,说明在工程中存在最佳夯击能。研究发现,在6000k N·m能级下,强夯有效加固深度在8m-9m范围内,土体塑性变形形似“梨形”;当夯击能从6000k N·m增加到8000k N·m时,土体有效加固深度增加不大,也在8m-9m范围内。(4)依次改变土体的内摩擦角、黏聚力、压缩模量和泊松比,发现内摩擦角对土体的变形量影响最大,其次是黏聚力,而压缩模量和泊松比对其影响不大。内摩擦角、黏聚力、压缩模量以及泊松比越大,土体变形量越小。当黏聚力从15k Pa增加到45k Pa时,土体单次沉降量减少了56%。
Editorial Department of China Journal of Highway and Transport;[5](2021)在《中国路基工程学术研究综述·2021》文中进行了进一步梳理作为路面的基础,稳定、坚实、耐久的路基是确保路面质量的关键,而中国一直存在着"重路面、轻路基"的现象,使得路基病害导致的路面问题屡禁不止。近年来,已有越来越多的学者注意到了路面病害与路基质量的关联性,从而促进了路基工程相关的新理论、新方法、新技术等不断涌现。该综述以近几年路基工程相关的国家科技奖的技术创新内容、科技部及国家自然科学基金项目、优秀中文权威期刊的论文、Web of Science中的高水平论文的关键词为依据,系统分析了国内外路基工程五大领域的研究现状及未来的发展方向。具体涵盖了:地基处理新技术、路堤填料工程特性、多场耦合作用下路堤结构性能演变规律、路堑边坡的稳定性、路基支挡与防护等。可为路基工程领域的研究人员与技术人员提供参考和借鉴。
张丽娟[6](2020)在《强夯法地基加固数值模拟及工程案例分析》文中研究说明随着社会的发展和科技的进步,地基处理技术得到了快速的发展,而强夯法地基加固方式因操作简单、经济合理、加固效果显着、适用范围广等优点,得到非常广泛的应用。但未有成熟的计算方法来指导设计和施工,强夯法处理后的地基在上部荷载作用下的变形还无法精准计算。因此研究强夯法对回填土地基加固的影响因素和实施效果具有重要意义。本文以某项目强夯法地基加固处理实例为依托,对强夯法加固高填方地基的一些具体问题进行分析,得出了强夯法地基加固处理的影响因素和工程实施中的改进方向。主要内容包括:1、介绍了回填土地基产生的背景及强夯法的优越性,简述强夯法的发展和实施中存在的问题。2、阐述了强夯法地基加固的机理,分析比较并选取了数值模拟的应用软件和本构。3、应用有限元软件ABAQUS进行数值模拟分析,比较锤重、落距、锤径和土体物理指标对强夯加固效果的影响程度;同时得出与实际工程同参数下的变形量和有效加固深度。4、根据实际工程的施工情况,强夯后的检测结果,与模拟结果的对比,得出实际施工结果围绕模拟结果上下浮动,同时提出了强夯法地基加固处理和基础应用的改进方向。为类似工程提供工程经验,也有利于强夯法的推广和发展。
杜继芳[7](2019)在《强夯的振动传播规律及加固机理研究》文中进行了进一步梳理强夯作为一种常用的地基加固方式,在各种大型建筑工程中广泛应用。但是目前对于强夯加固机理的理解尚不够深入,目前对于强夯的认识多集中于静态参数强夯前后的变化,对于强夯的动态过程研究较少。并且,对于强夯的加固范围的计算方法也大多停留在计算加固深度的一维状态,对于整体的加固范围没有较为有效的方法。本文依托973项目“山区支线机场高填方变形和稳定控制关键基础问题研究”,通过两个在建机场(北京新机场和承德机场),研究了强夯引起的振动在土石混合料和粉土地基中的传播规律,提出了对加固机理的新认识和可以计算加固范围的计算方法,主要研究内容如下:(1)针对三个不同的强夯能级(1000,1500,2000 k N·m),在北京新机场进行了粉土地基大型的现场试验,并对试验获得的夯锤振动加速度时程曲线、二维(竖直和水平方向)土体内部振动加速度和速度的传播过程以及夯坑的沉降规律等结果进行了分析。旁压试验和标贯试验说明,加固区域的土体整体属性都有了明显的改善,土体内部的振动规律的变化与夯坑沉降规律具有一致性,都表现出先增加后稳定的状态。当土体内部的振动加速度和速度超过一定值后,就会引起土体内部的颗粒密度增加,从而起到加固的效果;(2)强夯的加固机理可以解释为夯锤首先赋予夯坑内部土体以动量,将其压入周围土体,而后周围土体中的颗粒在相互之间动量的转化过程中,产生不可恢复的位移,可以称之为位移扩散原理;根据这一原理,利用夯坑的形状,对土体内部的沉降规律进行了数学模型描述,通过4组室内试验的验证,可以看出该数学模型可以有效的计算强夯内部的沉降规律;(3)通过承德机场的现场试验,利用3D扫描技术对夯坑的变形规律进行了建模,验证了沉降计算模型中关于夯坑的假设;通过测量填筑体内部的沉降规律,验证了该模型可以用于现场计算之中;在确定了加固范围的基础上,对模型中的参数进行了反演,得出了0.04 m的临界位移量,并利用该值与文献中的数据进行了对比,取得了一致的结果;(4)利用颗粒流软件对强夯的加固过程进行了数值模拟,从微观的角度分析了强夯过程中孔隙率及动态发展的规律,并比较了“重锤低落”和“轻锤高落”5中组合方式之间的振动规律;在强夯的作用下,孔隙率距离夯坑越远变化越小,在夯锤正下方的效果最好,侧方主要集中在34 m的范围;“重锤低落”产生振动的衰减速度要小于“轻锤高落”,因此,可以传播更远的距离,加固深度也更大。
谢增辉[8](2019)在《强夯施工对黄草坝引水隧洞的影响分析》文中研究说明强夯法是利用夯锤自由下落产生巨大的夯击能量,使土体中出现冲击波和很大的冲击应力,能显着降低土的压缩性、提高地基土的强度和均匀程度、改善砂土的抗液化条件以及消除湿陷性黄土的湿陷性等作用,它是目前最为常用和最经济的深层地基处理方法之一。本文以滇中引水工程黄草坝引水隧洞段上方拟建一大型公共基础设施,并采用强夯法进行地基加固处理为背景,由于强夯作用下较大的冲击动应力可能导致引水隧洞结构出现裂缝而影响正常运行。通过运用有限元基本分析方法,建立场地与隧洞的二维、三维数值模型,详细讨论了多种情况下强夯施工对黄草坝引水隧洞结构振动速度、最大主应力和最小主应力时程曲线以及应力云图,由计算结果判断强夯处理是否可行,为场地强夯施工提供一定的参考依据。本文主要工作内容和结论如下:(1)模拟分析时,首先分析土体中地下水的稳态作用及其对土体的影响,将自重应力场与地下水的稳态流场进行耦合,分析土体的塑形区域,将所得塑形区域的物理力学参数进行强度折减,然后进行夯击作用的影响分析。(2)在单击夯击能为3000kN·m,填方土层按照4米每层的前提下,分析了三条典型剖面在强夯作用下的竖向影响深度范围,并结合地质勘查报告得出3-3剖面地质状况相对较差,需进行深层次的研究和探讨。(3)针对3-3剖面分析不同填土高程处,在强夯作用下得出夯击点与隧洞轴线水平方向上的安全距离:随着高程的增加安全距离逐渐减小,强夯适用范围越来越大。在上述分析的基础上,研究了双夯击作用下的振动效应,得出当填土高程超过1870米且满足安全距离时,建议两夯点的距离不小于20米,此时双夯击作用下的应力影响区域不存在叠加效应,两夯击点的冲击应力作用相互无影响。此外又补算了单击夯击能为4000kN·m的夯击作用下,填土高程1862米以上布置夯击点时,夯点与隧洞轴线水平方向距离应不小于100米。(4)三维数值模拟分析中对地层的划分与二维模型略有不同,结合建模的复杂性和计算过程的难易程度,拟建场区地基土的分层比较简单,因此两者的分析计算结果稍有差异,但总体趋势是一致的:当填土高程为1878米,强夯作用下引水隧洞三条典型剖面处的最大拉应力和振动速度最大值均小于规范要求标准,强夯施工不会导致隧洞衬砌结构产生破坏。(5)在用机械碾压法对填方土层进行压实的过程中,土体的应力变化非常小,因此建议在不适宜进行强夯施工的区域采取机械碾压法进行施工。
王钕承[9](2019)在《高填方路堤强夯法施工数值模拟及力学分析》文中研究表明高填方路基相比于一般路基而言,具有填筑高度大,普通压实手段压实效果差的特点,而强夯法作为高填方的主要压实手段,在山区高填方工程建设中发挥着重要的作用。但山区高填方路基填筑材料通常为其他路段所产生的弃方土石料,粒径变化大,巨粒含量高,因此采用强夯法处理土石混合料填筑的高填方路基时的施工参数和加固效果应专门进行研究。除此之外强夯法施工时对已有建(构)筑物产生的影响是不可忽视的,强夯施工对于涵洞结构安全的影响在以往规范和研究中往往都是被忽略的问题。本文针对强夯法加固高填方的施工及强夯施工荷载对涵洞结构物的影响两个方面的问题,在总结以往强夯加固理论通过引入参数完善理论公式以及利用Abaqus有限元分析软件进行强夯施工的仿真模拟和力学分析,提出了不同工况下的建议施工控制参数,并研究分析了强夯荷载对涵洞结构的影响,并结合实体工程提出了强夯施工时的安全距离,为实际工程中强夯施工场地里已存在的涵洞结构物的安全性提供了依据。主要研究内容与结论如下:1、通过对国内外相关文献进行回顾,总结分析了强夯加固原理和强夯振动影响原理以及高填方涵洞受力特性,并在此基础上分析强夯加固效果与不同影响因素之间的关系从而得到了有效加固深度、水平加固范围、夯后土体压实度以及土体质点振动规律等重要指标的计算公式。2、通过土石混合料的大三轴试验,研究了土石混合料在剪切强度方面受土石比和围压等因素影响规律。并得到了土石混合料的剪切强度参数,为后续研究提供参考。3、利用Abaqus有限元软件,基于规范建议和试验得到的参数建立夯锤-路基模型。分析路基内部动应力响应与位移分布,并通过分析其力学规律提出建议施工控制参数。以2000kN?m的强夯施工为例,其有效加固深度为4.7m,有效加固水平范围为4.6m,有效夯击次数为7-8次。路基压实度为94%时,对应的土体内部竖向塑性应变的界限值为29.1%。4、利用有限元分析的原理,建立了夯锤-路基-涵洞模型。分析了在5m、10m、20m埋深下距夯锤水平距离为5m、10m、15m等情况下涵洞的应力和振动状态受强夯施工荷载影响的规律,并根据规范要求从应力和振动速度两个方面验算了涵洞的安全性。最后结论表明:强夯施工时应该考虑对涵洞结构安全的影响。以振动速度的标准,涵洞埋深分别为5m、10m和20m时对应的安全距离分别为9.1m、5.5m和4.5m。
袁腾方[10](2018)在《岩溶区高速公路路基强夯处治技术及其稳定性分析》文中研究指明随着西部交通建设的快速发展,高速公路将不可避免地穿越大量岩溶地区,如湖南省炎汝、汝郴、郴宁、宁道、桂武、娄新等高速公路以及广西、贵州两省份的大部分高速公路均存在大量岩溶路基。此时,如何合理、有效的处治岩溶路基并评价其稳定性成为工程建设中亟待解决的关键问题。因此,有必要在综合分析现有岩溶路基处治技术基础上提出更有效、更经济的处治方法,并对其稳定性进行评价。为此,本文以湖南省桂阳至临武(桂武)高速公路为工程依托,综合运用理论分析、数值模拟与现场试验等手段开展岩溶区高速公路路基强夯处治技术研究,提出岩溶区高速公路路基强夯处治设计原则与设计参数及其稳定性评价方法,以期为今后类似工程提供借鉴。本文的主要研究内容如下:(1)通过岩溶形成与发育条件、岩溶形态及其特征、岩溶路基病害以及岩溶路基稳定性问题等方面的内容,对岩溶路基病害进行综合分析,采用六种常规方法与规范方法对高速公路岩溶路基塌陷可能性进行分析;进而以此为基础提出岩溶路基强夯处治技术,并在明确岩溶路基强夯处治目的基础上提出岩溶路基强夯处治的有效加固深度与影响深度、夯击能、间距与遍数、加固范围及间隔时间等设计参数的建议取值。(2)针对依托工程设计并完成了岩溶区高速公路路基强夯处治现场试验研究,根据现有地基强夯处治方法确定了岩溶区高速公路路基强夯的试验目的与内容,即在对强夯点进行详细地质勘查与静力触探基础上,测试距强夯点不同水平距离处的地表振动加速度与水平动土压力、不同深度处的竖向动土压力以及强夯点地表沉降量,确定了强夯试验能量选择标准、仪器埋设方法与注意事项等。通过现场强夯试验结果对比分析分别获得了地表振动加速度、动应力与夯击数、水平距离的变化规律,验证本文所提出岩溶路基强夯处治设计参数的合理性。(3)考虑路基荷载与路面荷载对岩溶顶板的作用效应,提出岩溶路基稳定性分析受力分析模型,并在探讨路面车辆荷载与岩溶顶板荷载计算方法基础上,采用结构力学分析方法建立出考虑溶洞空间形态的岩溶顶板稳定性分析方法,即分别建立了岩溶顶板固支梁、抛物线拱、圆拱、双向板或壳体分析模型,并获得了由抗拉强度决定的各模型岩溶顶板最小安全厚度计算方法;通过典型工程案例探讨了岩溶顶板破坏模式与溶洞形态、几何平面尺寸、矢高及顶板围岩强度的相互影响规律,确定了岩溶顶板稳定性评价应重点探明溶洞空间形态及其矢高。(4)针对岩溶区双孔圆形土洞的地基稳定性,综合利用柯西积分法、Schwarz交替法与迭代求解方法建立出双孔土洞土层中任意一点应力值的求解方法,并基于应力坐标转换与Mohr-Coulomb强度准则构建出土洞稳定性评判方法,通过计算结果与精确解析解及ABAQUS数值模拟结果的对比分析,验证了本文所建立方法的计算精度;探讨了土体侧压力系数、土洞半径比以及土洞相对位置等因素对双孔土洞稳定性的影响规律,获得了土洞稳定系数随各影响因素的变化规律。(5)采用强度折减法与数值方法分析高速公路下伏溶洞在施工荷载与强夯荷载作用下的顶板稳定性;通过探讨不同跨度、高度、埋深及顶板厚度等工况下的岩溶顶板变形量、大小主应力与安全系数的变化规律,获得了不同工况下岩溶顶板安全稳定性判断标准,并明确溶洞埋深在20m以上或顶板岩层厚度超过3m时可不予处理;通过不同工况岩溶路基强夯处治数值模拟结果的对比分析获得了(200×20)kN·m的单击能强夯时岩溶顶板塌陷对应的各种可能工况,验证了所确定的高速公路岩溶路基强夯处治设计参数的合理性。(6)为了研究各种不确定因素会对岩溶区域的路基稳定性分析产生何种作用,提出了高速公路岩溶路基稳定性风险分析方法,同时采用模糊能度可靠性分析方法计算岩溶路基失稳概率,并建立岩溶路基风险损失确定方法;采用模糊能度可靠性分析方法确定岩溶路基失稳概率能充分考虑参数取值不确定性对分析结果的影响,并考虑抗弯与抗剪的共同作用;基于风险分析理论建立出岩溶路基风险损失确定方法以及稳定性风险分析方法。(7)将强夯处治技术应用于桂武高速公路岩溶路基处治,在综合分析桂武高速公路工程地质情况基础上提出了桂武高速公路岩溶区路基处治基本原则与具体的处治方案,通过综合优化分析在溶洞注浆的原设计方案基础上提出了基于强夯+开挖回填+盖板跨越等的岩溶路基综合处治方案;结合六标岩溶路基工程地质情况提出了具体的强夯处治技术设计方案与盖板跨越设计方案。
二、强夯法加固地基的数值模拟(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、强夯法加固地基的数值模拟(论文提纲范文)
(1)大面积吹填陆域地基处理技术应用研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 真空预压法国内外研究现状 |
1.2.1 真空-堆载联合预压法研究 |
1.2.2 真空-电渗联合预压法研究 |
1.3 强夯法国内外研究现状 |
1.3.1 高能级强夯法研究 |
1.3.2 降水强夯法研究 |
1.4 工程概况、研究内容、研究目的及创新点 |
1.4.1 工程概况 |
1.4.2 研究内容 |
1.4.3 研究目的 |
1.4.4 创新点 |
第2章 吹填陆域的工程地质特征研究 |
2.1 吹填陆域地质条件 |
2.1.1 陆域地形地貌 |
2.1.2 陆域地质结构及土层性质 |
2.1.3 陆域水文地质条件 |
2.2 吹填土层分布特征 |
2.3 吹填土层分布特征形成的原理 |
2.4 吹填陆域施工区域划分原则 |
2.5 本章小结 |
第3章 吹填场地地基处理技术研究 |
3.1 地基处理技术选择 |
3.2 地基处理效果检测方法 |
3.2.1 取土标准贯入试验 |
3.2.2 静力触探试验 |
3.2.3 平板载荷试验 |
3.2.4 十字板剪切试验 |
3.3 试验区场地土层性质 |
3.4 砂土区高能级强夯法试验研究 |
3.4.1 强夯方案 |
3.4.2 夯后加固效果分析 |
3.4.3 高能级强夯加固效果影响因素分析 |
3.5 软土区直排式覆水真空预压法试验研究 |
3.5.1 试验方案 |
3.5.2 现场监测及结果分析 |
3.5.3 现场检测及结果分析 |
3.6 本章小结 |
第4章 千层饼区降水强夯法试验研究 |
4.1 降水强夯法设计原理与施工方案 |
4.1.1 管井降水设计原理与施工 |
4.1.2 塑料排水板设计原理与施工 |
4.1.3 强夯设计原理与施工 |
4.2 夯后检测结果分析 |
4.2.1 静力触探试验结果分析 |
4.2.2 标准贯入试验结果分析 |
4.2.3 平板载荷试验结果分析 |
4.3 引出明盲结合降水强夯法 |
4.3.1 明盲结合降水强夯法特征 |
4.3.2 明盲降水强夯法适用范围 |
4.4 本章小结 |
第5章 明盲结合降水强夯法数值模拟分析 |
5.1 FLAC~(3D)简介 |
5.2 FLAC~(3D)理论分析 |
5.2.1 模型建立 |
5.2.2 网格划分 |
5.2.3 本构模型选择 |
5.2.4 边界条件设定 |
5.2.5 冲击荷载输入 |
5.2.6 土体参数和计算工况 |
5.3 计算结果与分析 |
5.3.1 超孔隙水压力分布规律 |
5.3.2 有效应力分析 |
5.3.3 位移分析 |
5.4 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
攻读硕士学位期间论文发表及科研情况 |
致谢 |
(2)珊瑚礁砂地震液化特性与抗液化处理方法研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景 |
1.2 研究现状 |
1.3 本文主要工作 |
第二章 珊瑚礁砂液化强度试验研究 |
2.1 引言 |
2.2 珊瑚礁砂基本物理性质 |
2.3 珊瑚礁砂液化特性试验 |
2.3.1 试验方案 |
2.3.2 动应力衰减的修正 |
2.3.3 珊瑚礁砂抗液化强度 |
2.4 本章小结 |
第三章 珊瑚礁砂孔压增长模型研究 |
3.1 引言 |
3.2 应变孔压增长模型 |
3.2.1 体积相容方程 |
3.2.2 体应变增量试验 |
3.2.3 回弹模量试验 |
3.3 应力孔压增长模型 |
3.4 本章小结 |
第四章 珊瑚礁砂渗透与体积变形特性研究 |
4.1 引言 |
4.2 珊瑚礁砂常水头渗透试验 |
4.3 珊瑚礁砂渗透系数计算模型 |
4.3.1 相关性分析 |
4.3.2 孔隙比对渗透系数的影响 |
4.3.3 有效粒径对渗透系数的影响 |
4.3.4 珊瑚礁砂渗透系数计算公式 |
4.4 孔压增长与消散导致的体积变形 |
4.4.1 液化机理与体积相容条件 |
4.4.2 珊瑚礁砂孔压消散体应变试验 |
4.4.3 珊瑚礁砂孔压消散体应变影响因素 |
4.4.4 珊瑚礁砂孔压增长与消散试验参数 |
4.5 本章小结 |
第五章 密实法处理珊瑚礁砂可液化场地适宜性研究 |
5.1 引言 |
5.2 珊瑚礁砂工程地质背景与场地特征 |
5.2.1 苏丹港珊瑚礁砂场地特征 |
5.2.2 沙特RSGT码头珊瑚礁砂场地特征 |
5.2.3 南海某试验区珊瑚礁砂场地特性 |
5.3 常用密实法处理技术与珊瑚礁砂地基加固效果 |
5.3.1 常用密实法处理技术原理与地基加固 |
5.3.2 珊瑚礁砂地基强夯法加固效果 |
5.3.3 珊瑚礁砂地基振冲法加固效果 |
5.4 珊瑚礁砂地基抗液化处理效果评价 |
5.4.1 有效加固处理深度 |
5.4.2 地基承载力 |
5.4.3 珊瑚礁砂场地地基液化评价方法与标准 |
5.5 本章小结 |
第六章 排水法处理珊瑚礁砂可液化场地适宜性研究 |
6.1 引言 |
6.2 水平土层孔压增长与消散基本方程 |
6.2.1 体积相容条件 |
6.2.2 孔压增长与消散基本方程 |
6.2.3 模型计算参数 |
6.3 Feq Drain孔压增长与消散计算程序简介 |
6.3.1 简介 |
6.3.2 输入模块 |
6.3.3 输出模块 |
6.4 不同排水工程措施下的孔压增长消散数值计算 |
6.4.1 珊瑚礁砂计算参数 |
6.4.2 设置水平排水层抗液化处理效果评价 |
6.4.3 设置竖向碎石桩抗液化处理效果评价 |
6.5 珊瑚礁砂排水法工程实践与地基抗液化评价 |
6.5.1 工程概况与场地特征 |
6.5.2 抗震设计标准与液化可能性评价 |
6.5.3 振冲置换碎石桩地基加固方案 |
6.6 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 研究展望 |
参考文献 |
致谢 |
作者简介 |
攻读博士期间发表的文章 |
攻读博士期间参与的科研项目 |
(3)临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测(论文提纲范文)
致谢 |
中文摘要 |
ABSTRACT |
1 引言 |
1.1 研究背景和意义 |
1.2 国内外研究现状 |
1.2.1 河谷区多层软土地基研究现状 |
1.2.2 软土地基处理方法研究现状 |
1.2.3 软土地基沉降分析与预测研究现状 |
1.3 论文主要研究内容和技术线路 |
1.3.1 主要研究内容 |
1.3.2 研究方法 |
1.3.3 技术线路 |
2 河谷区多层软土地基工程特性分析 |
2.1 工程背景 |
2.1.1 项目概况 |
2.1.2 地层岩性 |
2.1.3 区域地质构造 |
2.1.4 水文地质条件 |
2.2 河谷区多层软土地基工程特性分析 |
2.2.1 地层成因 |
2.2.2 分布规律 |
2.2.3 工程性质 |
2.3 强夯垫层联合堆载静压法加固软土地基机理分析 |
2.3.1 软土地基处理方法 |
2.3.2 强夯垫层法加固机理 |
2.3.3 堆载静压法加固机理 |
2.3.4 强夯垫层联合堆载预压法加固机理 |
2.4 本章小结 |
3 河谷区多层软土强夯加固地基现场监测试验 |
3.1 软基处理段简介 |
3.2 监测测点平面分布 |
3.3 监测测点剖面分布 |
3.4 检测元件的埋设与监测 |
3.4.1 分层沉降监测 |
3.4.2 孔隙水压力监测 |
3.4.3 土压力监测 |
3.4.4 侧向位移监测 |
3.5 强夯垫层法设计参数与工艺 |
4 河谷区多层软土强夯加固地基固结沉降变化特征分析 |
4.1 强夯加固河谷区多层软土地基沉降规律研究 |
4.1.1 软土地基在各阶段沉降形态特征研究 |
4.1.2 不同类型软土地基分层沉降规律研究 |
4.1.3 沉降变化规律分析 |
4.2 强夯加固软土地基孔隙水压力与固结规律研究 |
4.2.1 软土地基各阶段超静孔隙水压力变化特征研究 |
4.2.2 不同类型软土地基固结特征研究 |
4.2.3 孔隙水压力变化与固结特征分析 |
4.3 强夯加固软土地基有效应力与加固效果研究 |
4.3.1 软土地基各阶段土压力变化特征研究 |
4.3.2 不同类型软土地基强夯加固效果分析 |
4.3.3 土压力与强夯加固效果分析 |
4.4 强夯加固软土地基土体侧向位移特征研究 |
4.4.1 软土地基不同深度土层侧向位移特征研究 |
4.4.2 不同类型软土地基侧向位移对比分析 |
4.4.3 侧向位移变化规律分析 |
4.5 本章小结 |
5 河谷区多层软土强夯加固地基路基沉降数值分析 |
5.1 FLAC3D软件综述 |
5.1.1 FLAC3D软件简介 |
5.1.2 流固耦合数值分析方法 |
5.1.3 非线性动力反应数值分析方法 |
5.2 强夯加固软基数值模型的建立与沉降分析 |
5.2.1 模型建立 |
5.2.2 强夯冲击荷载施加 |
5.2.3 强夯加固软基沉降变形特征分析 |
5.2.4 强夯加固软基孔隙水压力变化分析 |
5.2.5 强夯加固软土地基固结特征分析 |
5.2.6 各类型软土地基强夯加固效果对比分析 |
5.3 碎石桩加固软基数值模型建立与沉降分析 |
5.3.1 碎石桩加固相关参数的确定 |
5.3.2 碎石桩加固软基沉降变形特征分析 |
5.3.3 碎石桩加固软基孔隙水压力变化分析 |
5.3.4 碎石桩加固软基应力数值模拟分析 |
5.4 天然软土地基数值模型建立与沉降分析 |
5.4.1 模型建立 |
5.4.2 天然软基数值模型计算结果分析 |
5.5 不同加固方法条件下软土地基沉降与固结特征分析 |
5.6 本章小结 |
6 河谷区多层软土强夯加固地基沉降预测 |
6.1 高速公路路基沉降预测方法 |
6.1.1 分层总和法 |
6.1.2 经验公式法 |
6.1.3 Asaoka法 |
6.2 临清高速河谷区多层软土强夯加固地基路基沉降预测 |
6.2.1 分层总和法的沉降预测与修正 |
6.2.2 不同模型下软基沉降发展特征预测 |
6.2.3 Asaoka法预测 |
6.3 不同模型沉降预测结果对比与分析 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
索引 |
作者简历 |
学位论文数据集 |
(4)深厚回填土地基强夯加固处理研究分析(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景及研究意义 |
1.2 强夯法概述及发展历程 |
1.3 强夯法研究现状 |
1.3.1 强夯加固理论 |
1.3.2 强夯数值模拟分析 |
1.4 论文研究内容 |
1.5 技术路线 |
第二章 强夯法加固机理及夯后检测技术 |
2.1 概述 |
2.2 强夯加固机理 |
2.2.1 动力固结理论 |
2.2.2 振动波压密理论 |
2.2.3 动力置换理论 |
2.3 强夯后地基检测 |
2.3.1 载荷试验 |
2.3.2 动力触探试验 |
2.3.3 瑞利波试验 |
2.4 本章小结 |
第三章 强夯设计及施工参数确定 |
3.1 强夯法设计步骤 |
3.2 强夯主要施工设备 |
3.2.1 夯锤 |
3.2.2 起重设备 |
3.2.3 脱钩装置 |
3.3 强夯施工参数选取 |
3.3.1 有效加固深度 |
3.3.2 夯击点布置 |
3.3.3 夯击次数 |
3.3.4 夯击遍数 |
3.3.5 间歇时间 |
3.3.6 处理范围 |
3.4 本章小结 |
第四章 深厚回填土地基强夯加固处理及有限元建模 |
4.1 工程项目概况 |
4.2 项目场地环境 |
4.2.1 地质构造、地震、气象及水文 |
4.2.2 地基土层存在风险 |
4.2.3 工程地质 |
4.3 地基处理 |
4.3.1 强夯施工方案 |
4.3.2 强夯施工参数 |
4.4 强夯施工后效果检测 |
4.4.1 浅层平板载荷试验 |
4.4.2 动力触探试验 |
4.5 工程数值模拟 |
4.6 ABAQUS有限元软件简介 |
4.7 强夯有限元模型的建立 |
4.7.1 本构模型选取 |
4.7.2 单元类型选择 |
4.7.3 模型网格划分 |
4.7.4 有限元模型建立 |
4.7.5 荷载输入及参数 |
4.8 模型合理性 |
4.9 本章小结 |
第五章 影响深厚回填土地基强夯效果因素研究 |
5.1 同一夯击能作用下强夯效果影响因素研究 |
5.1.1 单次夯击下地基土体竖向位移变化情况 |
5.1.2 单次夯击下地基土体应力变化情况 |
5.1.3 不同夯击次数下地基土体竖向位移变化情况 |
5.1.4 不同夯击组合下土体强夯效果 |
5.1.5 不同夯锤直径强夯效果 |
5.2 不同夯击能作用下强夯加固效果研究 |
5.2.1 单次夯击地基土体竖向位移变化情况 |
5.2.2 单次夯击下地基土体动应力变化情况 |
5.2.3 单次夯击下地基土体水平位移变化情况 |
5.3 有效加固深度分析 |
5.3.1 相同夯击能下对有效加固深度影响因素研究 |
5.3.2 不同夯击能下对有效加固深度影响因素研究 |
5.4 土层物理力学指标对强夯效果的影响 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 攻读硕士学位期间取得成果 |
(5)中国路基工程学术研究综述·2021(论文提纲范文)
索 引 |
0 引 言(长沙理工大学张军辉老师、郑健龙院士提供初稿) |
1 地基处理新技术(山东大学崔新壮老师、重庆大学周航老师提供初稿) |
1.1 软土地基处理 |
1.1.1 复合地基处理新技术 |
1.1.2 排水固结地基处理新技术 |
1.2 粉土地基 |
1.3 黄土地基 |
1.4 饱和粉砂地基 |
1.4.1 强夯法地基处理技术新进展 |
1.4.2 高真空击密法地理处理技术 |
1.4.3 振冲法地基处理技术 |
1.4.4 微生物加固饱和粉砂地基新技术 |
1.5 其他地基 |
1.5.1 冻土地基 |
1.5.2 珊瑚礁地基 |
1.6 发展展望 |
2 路堤填料的工程特性(东南大学蔡国军老师、中南大学肖源杰老师、长安大学张莎莎老师提供初稿) |
2.1 特殊土 |
2.1.1 膨胀土 |
2.1.2 黄 土 |
2.1.3 盐渍土 |
2.2 黏土岩 |
2.2.1 黏 土 |
2.2.2 泥 岩 |
(1)粉砂质泥岩 |
(2) 炭质泥岩 |
(3)红层泥岩 |
(4)黏土泥岩 |
2.2.3 炭质页岩 |
2.3 粗粒土 |
2.4 发展展望 |
3 多场耦合作用下路堤结构性能演变规律(长沙理工大学张军辉老师、中科院武汉岩土所卢正老师提供初稿) |
3.1 路堤材料性能 |
3.2 路堤结构性能 |
3.3 发展展望 |
4 路堑边坡稳定性分析(长沙理工大学曾铃老师、重庆大学肖杨老师、长安大学晏长根老师提供初稿) |
4.1 试验研究 |
4.1.1 室内试验研究 |
4.1.2 模型试验研究 |
4.1.3 现场试验研究 |
4.2 理论研究 |
4.2.1 定性分析法 |
4.2.2 定量分析法 |
4.2.3 不确定性分析法 |
4.3 数值模拟方法研究 |
4.3.1 有限元法 |
4.3.2 离散单元法 |
4.3.3 有限差分法 |
4.4 发展展望 |
5 路基防护与支挡(河海大学孔纲强老师、长沙理工大学张锐老师提供初稿) |
5.1 坡面防护 |
5.2 挡土墙 |
5.2.1 传统挡土墙 |
5.2.2 加筋挡土墙 |
5.2.3 土工袋挡土墙 |
5.3 边坡锚固 |
5.3.1 锚杆支护 |
5.3.2 锚索支护 |
5.4 土钉支护 |
5.5 抗滑桩 |
5.6 发展展望 |
策划与实施 |
(6)强夯法地基加固数值模拟及工程案例分析(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 地基处理的方法 |
1.1.3 研究强夯法地基处理技术的意义 |
1.2 国内外研究及应用现状 |
1.2.1 强夯技术的发展与应用 |
1.2.2 强夯法在研究和应用中存在的问题 |
1.3 本文研究思路及论文框架 |
第2章 强夯法的加固机理及应用 |
2.1 强夯加固机理 |
2.2 强夯法应用效果 |
2.2.1 有效加固深度 |
2.2.2 加固质量 |
2.3 强夯法加固的仿真机理 |
2.3.1 数值模拟的应用软件 |
2.3.2 模型土体本构关系 |
第3章 深回填土强夯法数值模拟分析 |
3.1 ABAQUS有限元模型的建立 |
3.2 单次夯击后土体的变化规律 |
3.2.1 单次夯击后土体变形量的变化规律 |
3.2.2 单次夯击后的有效加固深度变化规律 |
3.3 多次夯击后土体的变化规律 |
3.3.1 多次夯击后土体变形量的变化规律 |
3.3.2 多次夯击后的有效加固深度变化规律 |
3.4 土层物理指标对强夯效果的影响 |
3.5 本章小结 |
第4章 深回填土强夯的工程案例分析 |
4.1 工程概况及风险分析 |
4.1.1 工程概况 |
4.1.2 风险分析 |
4.2 工程强夯的可行性分析 |
4.2.1 沉降变化规律 |
4.2.2 经济性比较 |
4.2.3 地理环境 |
4.3 强夯法在工程实例中的应用 |
4.3.1 强夯法的应用范围 |
4.3.2 强夯法的施工 |
4.3.3 强夯法的检测 |
4.3.4 使用中的监测 |
4.4 本章小结 |
第5章 结论及展望 |
5.1 研究结论 |
5.2 进一步研究工作 |
参考文献 |
作者简历 |
1. 教育经历 |
2. 工作经历 |
(7)强夯的振动传播规律及加固机理研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及研究意义 |
1.2 国内外研究现状 |
1.2.1 技术适用性 |
1.2.2 加固范围 |
1.2.3 地面变形 |
1.2.4 加固机理 |
1.2.5 振动分析 |
1.2.6 数值模拟 |
1.3 本文研究内容及技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线图 |
第二章 粉土地基强夯振动规律的试验研究 |
2.1 现场概况 |
2.2 试验设计 |
2.3 试验前检测 |
2.3.1 旁压试验 |
2.3.2 标准贯入试验 |
2.3.3 密度测试 |
2.4 试验流程 |
2.5 试验数据分析 |
2.5.1 夯锤加速度分析 |
2.5.2 夯锤正下方振动的传播规律 |
2.5.3 土体内部振动规律分析 |
2.5.4 环境影响分析 |
2.6 讨论 |
2.6.1 加固范围分析 |
2.6.2 强夯引起动应力分析 |
2.6.3 振动加速度与土体性质之间的关系 |
2.6.4 振动速度与土体性质之间的关系 |
2.7 结论 |
附图 |
第三章 强夯加固机理及计算模型 |
3.1 加固机理分析 |
3.2 强夯计算模型 |
3.2.1 概述 |
3.2.2 计算模型 |
3.3 参数确定与验证 |
3.3.1 夯沉量与夯击次数关系 |
3.3.2 夯坑在不同夯击次数的变化情况 |
3.3.3 计算结果与试验结果对比 |
3.3.4 结果验证 |
3.4 结论 |
附计算程序 |
第四章 强夯加固范围计算方法的应用及讨论 |
4.1 强夯地表变形沉降试验 |
4.1.1 强夯地表变形沉降监测方案 |
4.2 夯坑成型过程 |
4.3 夯坑成型数据 |
4.4 计算结果与试验结果对比 |
4.5 讨论 |
4.6 结论 |
第五章 强夯加固机理的数值模拟研究 |
5.1 概述 |
5.2 计算原理与模型的建立 |
5.2.1 计算原理 |
5.2.2 强夯数值模型的建立 |
5.3 模型可靠性验证 |
5.3.1 夯锤振动加速时程 |
5.3.2 夯沉量 |
5.3.3 土体内部振动规律 |
5.4 动态过程分析 |
5.4.1 孔隙率变化规律 |
5.4.2 “重锤低落”与“轻锤高落”动态规律分析 |
5.5 结论 |
第六章 结论及展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
攻读学位期间取得的成果 |
致谢 |
(8)强夯施工对黄草坝引水隧洞的影响分析(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 强夯法的特点和应用 |
1.2.1 强夯法的机具设备 |
1.2.2 强夯法施工的特点 |
1.2.3 强夯法应用范围 |
1.3 国内外研究现状 |
1.4 本文的研究内容及技术路线 |
第二章 强夯加固理论及设计参数分析 |
2.1 土体的结构和组成 |
2.2 强夯法加固地基的理论研究 |
2.2.1 动力密实机理 |
2.2.2 动力固结机理 |
2.2.3 动力置换机理 |
2.2.4 振动波压密机理 |
2.3 强夯设计参数分析 |
2.4 本章小结 |
第三章 强夯法二维数值模拟分析 |
3.1 MIDAS/GTS在岩土工程中的应用 |
3.2 强夯分析模型的建立 |
3.2.1 土体的本构模型 |
3.2.2 计算参数 |
3.2.3 边界条件和荷载的确定 |
3.2.4 计算模型的建立 |
3.2.4.1 工程背景 |
3.2.4.2 拟建场区地质水文条件 |
3.2.4.3 拟建场区地基土的力学特性 |
3.2.4.4 二维计算模型 |
3.2.4.5 本次分析的评判依据 |
3.2.5 本文中使用的符号、单位及附图说明 |
3.3 拟建场区渗流作用下应力应变分析 |
3.3.1 渗流场 |
3.3.2 土体自重与地下水作用下的耦合应力场 |
3.3.3 松动圈 |
3.4 强夯作用下隧洞的应力及质点振动速度分析 |
3.4.1 1-1 剖面不同填土标高数值分析结果 |
3.4.2 2-2 剖面不同填土标高数值分析结果 |
3.4.3 3-3 剖面不同填土标高数值分析结果 |
3.5 强夯施工对隧洞水平影响范围分析 |
3.5.1 3-3 剖面高程1886 米水平方向的安全距离 |
3.5.2 3-3 剖面高程1882 米水平方向的安全距离 |
3.5.3 3-3 剖面高程1878 米水平方向的安全距离 |
3.5.4 3-3 剖面高程1874 米水平方向的安全距离 |
3.5.5 3-3 剖面高程1870 米水平方向的安全距离 |
3.5.6 3-3 剖面高程1866 米水平方向的安全距离 |
3.6 双夯击叠加作用效应对黄草坝引水隧洞的影响 |
3.6.1 高程1866 米填土面双夯击夯点相距20 米的分析 |
3.6.2 高程1870 米填土面双夯击夯点相距20 米的分析 |
3.7 4000 KN·M夯击能以及机械碾压法施工的影响分析 |
3.7.1 4000 KN·M夯击能对黄草坝引水隧洞影响分析 |
3.7.2 机械碾压法施工对黄草坝引水隧洞的影响分析 |
3.8 本章小结 |
第四章 强夯法三维数值模拟分析 |
4.1 计算参数 |
4.2 计算模型 |
4.3 三维模型时程分析 |
4.3.1 三维模型1-1 剖面分析 |
4.3.2 三维模型2-2 剖面分析 |
4.3.3 三维模型3-3 剖面分析 |
4.4 本章小结 |
第五章 结论和展望 |
5.1 结论 |
5.2 展望 |
致谢 |
参考文献 |
附录 |
(9)高填方路堤强夯法施工数值模拟及力学分析(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 强夯加固机理 |
1.2.2 强夯法振动影响 |
1.2.3 高填方涵洞的结构安全 |
1.3 主要研究内容 |
1.4 技术路线 |
第二章 强夯法加固机理及结构物安全理论研究 |
2.1 强夯加固机理 |
2.1.1 动力压密理论 |
2.1.2 动力固结理论 |
2.1.3 振动波密实理论 |
2.2 强夯加固效果研究 |
2.2.1 强夯加固效果分区 |
2.2.2 有效加固深度计算 |
2.2.3 强夯加固范围计算 |
2.2.4 基于相对密实度D_r的夯后土性指标计算 |
2.3 强夯的振动影响理论 |
2.3.1 强夯振动的影响 |
2.3.2 强夯振动影响机理 |
2.3.3 强夯下理想弹塑性土体振动特征 |
2.4 高填方涵洞的结构安全理论 |
2.4.1 高填方涵洞的定义及特点 |
2.4.2 高填方涵洞的受力机理 |
2.5 高填方涵洞的安全振动控制标准 |
2.6 本章小结 |
第三章 土石混合料的性能参数试验研究 |
3.1 土石混填料的最大干密度试验 |
3.1.1 试验目的 |
3.1.2 试验设备 |
3.1.3 试验用土石混合料 |
3.1.4 试验结果整理与分析 |
3.2 土石混填料的抗剪强度 |
3.2.1 土石混合料抗剪性能试验原理 |
3.2.2 土石混合料剪切试验方案 |
3.2.3 土石混填料的大三轴试验 |
3.2.4 试验结果分析 |
3.3 本章小结 |
第四章 高填方路堤强夯施工的模拟研究 |
4.1 Abaqus软件介绍 |
4.2 数值模型及参数选取 |
4.2.1 基本假设 |
4.2.2 土体本构模型的选取 |
4.2.3 夯锤的本构模型选取 |
4.2.4 本构模型参数 |
4.3 模型建立 |
4.3.1 模型尺寸 |
4.3.2 选取单元类型 |
4.3.3 网格划分 |
4.4 模型地应力平衡 |
4.5 材料阻尼的确定 |
4.6 模型工况的确定 |
4.7 边界条件及荷载的确定 |
4.8 结果分析 |
4.8.1 竖向位移分析 |
4.8.2 侧向位移分析 |
4.8.3 动应力响应分析 |
4.8.4 强夯有效加固深度的力学分析 |
4.8.5 其他能级的分析结果 |
4.9 本章小结 |
第五章 高填方涵洞受强夯施工影响模拟研究 |
5.1 模型的建立 |
5.1.1 建立模型的基本假定及相关说明 |
5.1.2 本构模型的选取 |
5.1.3 场地尺寸与夯锤尺寸 |
5.1.4 涵洞的尺寸 |
5.1.5 网格的划分 |
5.1.6 其他模型参数的确定 |
5.2 涵洞模型的模拟工况 |
5.3 结果分析 |
5.3.1 模型有效性验证 |
5.3.2 涵洞的应力状态分析 |
5.3.3 涵洞振动状态分析 |
5.4 本章小结 |
第六章 总结与展望 |
6.1 主要研究结论 |
6.2 进一步工作建议 |
致谢 |
参考文献 |
攻读学位期间取得的研究成果 |
(10)岩溶区高速公路路基强夯处治技术及其稳定性分析(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究目的与意义 |
1.2 岩溶区路基稳定性分析方法 |
1.2.1 定性分析方法 |
1.2.2 半定量分析方法 |
1.2.3 定量分析方法 |
1.3 岩溶路基处治方法 |
1.4 强夯法加固地基的发展历史 |
1.5 强夯法加固技术研究现状及发展趋势 |
1.6 强夯处治技术在岩溶区路基处治中的应用 |
1.7 岩溶路基质量控制方法 |
1.8 本文研究内容 |
第2章 岩溶区高速公路路基处治技术研究 |
2.1 岩溶路基病害分析 |
2.1.1 岩溶的形成及发育条件 |
2.1.2 常见岩溶形态及其特征 |
2.1.3 岩溶区路基病害分析 |
2.1.4 岩溶路基稳定性问题 |
2.2 高速公路岩溶路基塌陷分析 |
2.2.1 常规方法 |
2.2.2 规范方法 |
2.3 岩溶路基强夯处治技术 |
2.3.1 溶洞路基强夯处治目的 |
2.3.2 强夯设计参数 |
2.3.3 强夯处治施工流程 |
2.4 本章小结 |
第3章 岩溶区高速公路路基强夯试验研究 |
3.1 强夯试验目的 |
3.2 强夯试验内容 |
3.2.1 试验前夯点地质勘查与静力触探 |
3.2.2 表层振动加速度测试 |
3.2.3 地基竖向动土压力分布测试 |
3.2.4 水平向动土压力分布测试 |
3.2.5 强夯能量选择标准 |
3.2.6 强夯仪器埋设及注意事项 |
3.2.7 强夯试验具体步骤 |
3.3 强夯测试数据及分析 |
3.3.1 试验测试数据 |
3.3.2 试验数据整理及分析 |
3.4 本章小结 |
第4章 高速公路路基岩溶顶板稳定性分析方法 |
4.1 概述 |
4.2 路基作用效应分析 |
4.2.1 作用类型 |
4.2.2 影响因素 |
4.2.3 路堤地基受力分析 |
4.2.4 岩溶路基分析模型 |
4.2.5 路基车辆荷载 |
4.2.6 溶洞顶板荷载计算 |
4.3 岩溶顶板单洞稳定性分析方法 |
4.3.1 固支梁模型 |
4.3.2 抛物线拱模型 |
4.3.3 圆拱模型 |
4.3.4 双向板或壳体模型 |
4.3.5 岩溶顶板破坏模式与影响因素分析 |
4.3.6 路基岩溶顶板稳定性分析过程 |
4.4 岩溶顶板双洞稳定性分析方法 |
4.4.1 计算模型及基本假定 |
4.4.2 Schwarz交替法求解双孔土洞应力 |
4.4.3 双孔土洞稳定性分析 |
4.4.4 结果验证 |
4.4.5 参数分析 |
4.5 工程实例分析 |
4.6 本章小结 |
第5章 岩溶区高速公路路基强夯塌陷数值模拟分析 |
5.1 概述 |
5.2 岩溶顶板数值分析力学参数 |
5.3 岩溶路基塌陷三维非线性有限元分析 |
5.3.1 几何分析模型及边界条件 |
5.3.2 三维有限元分析结果 |
5.4 强夯塌陷三维有限元分析结果 |
5.4.1 顶板厚1m,洞跨5m时的塌陷分析 |
5.4.2 顶板厚0.5m,洞跨2m时的塌陷分析 |
5.5 本章小结 |
第6章 岩溶区高速公路路基稳定性风险评估 |
6.1 概述 |
6.2 风险分析基本理论 |
6.2.1 风险的定义 |
6.2.2 风险分析流程 |
6.3 岩溶路基模糊能度可靠性分析方法 |
6.3.1 岩溶路基模糊极限平衡分析模型 |
6.3.2 计算参数三角模糊数确定方法 |
6.3.3 岩溶路基模糊能度可靠性分析方法 |
6.4 工程实例分析 |
6.4.1 工程概况 |
6.4.2 岩溶顶板模糊能度可靠性分析实施过程 |
6.5 本章小结 |
第7章 桂武高速公路工程实例分析 |
7.1 桂武高速公路工程地质概况 |
7.2 桂武高速公路岩溶区路基处治基本原则 |
7.3 桂武高速公路岩溶区路基处治方案 |
7.3.1 桂武高速公路岩溶区路基处治工程特点 |
7.3.2 桂武高速公路岩溶区路基处治方案比选 |
结论与展望 |
结论 |
本文主要创新点 |
展望 |
参考文献 |
致谢 |
附录 A(攻读学位期间论文、科研及获奖情况) |
已发表的学术论文 |
四、强夯法加固地基的数值模拟(论文参考文献)
- [1]大面积吹填陆域地基处理技术应用研究[D]. 苏亮. 青岛理工大学, 2021(02)
- [2]珊瑚礁砂地震液化特性与抗液化处理方法研究[D]. 秦志光. 中国地震局工程力学研究所, 2021(02)
- [3]临清高速公路河谷区多层软土强夯加固地基路基沉降分析与预测[D]. 杨天琪. 北京交通大学, 2021(02)
- [4]深厚回填土地基强夯加固处理研究分析[D]. 邹梦超. 昆明理工大学, 2021(01)
- [5]中国路基工程学术研究综述·2021[J]. Editorial Department of China Journal of Highway and Transport;. 中国公路学报, 2021(03)
- [6]强夯法地基加固数值模拟及工程案例分析[D]. 张丽娟. 浙江大学, 2020(01)
- [7]强夯的振动传播规律及加固机理研究[D]. 杜继芳. 北京航空航天大学, 2019(01)
- [8]强夯施工对黄草坝引水隧洞的影响分析[D]. 谢增辉. 昆明理工大学, 2019(04)
- [9]高填方路堤强夯法施工数值模拟及力学分析[D]. 王钕承. 重庆交通大学, 2019(06)
- [10]岩溶区高速公路路基强夯处治技术及其稳定性分析[D]. 袁腾方. 湖南大学, 2018(06)